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Abstract

Lindsay, R.K., B.G. Buchanan, E.A. Feigenbaum and J. Lederberg, DENDRAL: a case
study of the first expert system for scientific hypothesis formation, Artificial Intelligence A1

{1993) 209-261.

The DENDRAL Project was one of the first large-scale programs to embody the strategy of
using detailed, task-specific knowledge about a problem domain as a source of heuristics,
and to seek generality through automating the acquisition of such knowledge. This paper

Patrick W. Langley
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Introduction
In recent years researchers have produced
a number of programs capable of scientific-like
behavior. Each of the systems, DENDRAL(Feigen-

baum and Lederberg, 1971), meta-DENDRAL(Buchan-
an, Feigenbaum and Sridharan, 1972), MYCIN

(Davis, Buchanan and Shortliffe, 1975) and AM

(Lenat, 1976) could arrive at rules that ex-
plained observed data. In this paper | discuss

another system, BACON, which discovers simple
empirical laws like those found by early
physicists.

[Langley 1977]

summarizes the major conceptual contributions and accomplishments of that project. It is an
attempt to distill from this research the lessons that are of importance to artificial
intelligence research and to provide a record of the final status of two decades of work.

[Lindsay+ 1993]




Functional genomic hypothesis
generation and experimentation

by a robot scientist

Ross D. King', Kenneth E. Whelan', Ffion M. Jones', Philip G. K. Reiser’,

Christopher H. Bryant’, Stephen H. Muggleton’, Douglas B. Kell*
& Stephen G. Oliver’

'Department of Computer Science, University of Wales, Aberystwyth SY23 3DB,
UK

*School of Computing, The Robert Gordon University, Aberdeen AB10 1FR, UK
*Department of Computing, Imperial College, London SW7 2AZ, UK
4Departmenr of Chemistry, UMIST, P.O. Box 88, Manchester M60 1QD, UK
>School of Biological Sciences, University of Manchester, 2.205 Stopford Building,
Manchester M13 9PT, UK

The question of whether it is possible to automate the scientific
process is of both great theoretical interest"” and increasing
practical importance because, in many scientific areas, data are
being generated much faster than they can be effectively ana-
lysed. We describe a physically implemented robotic system that
applies techniques from artificial intelligence’® to carry out
cycles of scientific experimentation. The system automatically

[King+ 2004 ]
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AlphaFold: a solution to a 50-
year-old grand challenge in

biology

November 4@, 2020

[https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology]
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Scientificdiscoveryin the age of artificial
intelligence
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M |Check for updates

Artificial intelligence (Al) is being increasingly integrated into scientific discovery to

augment and accelerate research, helping scientists to generate hypotheses, design
experiments, collect and interpret large datasets, and gain insights that might not
have been possible using traditional scientific methods alone. Here we examine
breakthroughs over the past decade thatinclude self-supervised learning, which
allows models to be trained on vast amounts of unlabelled data, and geometric deep
learning, which leverages knowledge about the structure of scientific data to enhance
model accuracy and efficiency. Generative Al methods can create designs, suchas
small-molecule drugs and proteins, by analysing diverse data modalities, including
images and sequences. We discuss how these methods can help scientists throughout
the scientific process and the central issues that remain despite such advances. Both
developers and users of Al toolsneed a better understanding of when such approaches
need improvement, and challenges posed by poor data quality and stewardship remain.
These issues cut across scientific disciplines and require developing foundational
algorithmic approaches that can contribute to scientific understanding or acquire it
autonomously, making them critical areas of focus for Alinnovation.

[Wang+ 2023]

Artificial Intelligence for Science in
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Autonomous discovery in the chemical sciences part I: Progress

Connor W. Coley*! Natalie 8. Eyke? Klavs F. Jensen™

Keywords: automation, chemoinformatics, drug discovery, machine learning, materials science

[Coley+ 2020]

Machine learning and the physical sciences*

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali

The Innovation

Tishby, Leslie Vogt-Maranto, and Lenka Zdeborova
Rev. Mod. Phys. 91, 045002 — Published 6 December 2019
DOI: 10.1103/RevModPhys.91.045002

[Carleo+ 2020]
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Artificial intelligence: A powerful paradigm for

scientific research
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[Xu+ 2021]
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"] Check for updates

Al in health and medicine

Pranav Rajpurkar ©'4, Emma Chen?®#, Oishi Banerjee?* and Eric J. Topol ©3™

Artificial intelligence (Al) is poised to broadly reshape medicine, potentially improving the experiences of both clinicians and
patients. We discuss key findings from a 2-year weekly effort to track and share key developments in medical Al. We cover
prospective studies and advances in medical image analysis, which have reduced the gap between research and deployment.
We also address several promising avenues for novel medical Al research, including non-image data sources, unconventional
problem formulations and human-Al collaboration. Finally, we consider serious technical and ethical challenges in issues span-
ning from data scarcity to racial bias. As these challenges are addressed, Al's potential may be realized, making healthcare
more accurate, efficient and accessible for patients worldwide.

[Rajpurkar+ 2022]
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A review of Earth Artificial Intelligence
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Cindy Lin’, Nicoleta Cristea ®", Daniel Tong °, Wendy Hawley Carande ", Xiaogang Ma,
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Thomas E. Gill ™, Julien Chastang ", Daniel Howard ", Benjamin Holt *,
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[Sun+ 2022]



Physics-Informed Machine Learning: A Survey
on Problems, Methods and Applications

Basic Research Needs Workshop for

Scientific Machine Learning
Core Technologies for Artificial Intelligence

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng,
Hang Su, Jun Zhu

Abstract—Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning,
and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by
physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and
collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. By integrating the data
and mathematical physics models seamlessly, it can guide the machine learning model towards solutions that are physically plausible,
improving accuracy and efficiency even in uncertain and high-dimensional contexts. In this survey, we present this learning paradigm
called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior
knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent
development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, B k 2 01 9
and methods for incorporating physical prior. We also propose several important open research problems based on the current trends [ aKer + ]
in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and

significant domain-specific applications like inverse engineering design and robotic control is far from being fully explored in the field of

physics-informed machine learning. We believe that the interdisciplinary research of physics-informed machine learning will

significantly propel research progress, foster the creation of more effective machine learning models, and also offer invaluable

SpRpp—— e Active Learning
e Causal Inference
Automated Scientific Discovery: ® OO D G e n e r a | | Z a t | O n

From Equation Discovery to Autonomous Discovery Systems

Stefan Kramer!  Mattia Cerrato' SaSo Dzeroski® Ross D. King ® A n O m a | y De t e C t l O n

'Johannes Gutenberg University “JoZef Stefan Institute *Chalmers University “University of Cambridge
Mainz, Germany Ljubljana, Slovenia Gothenburg, Sweden Cambridge, UK

{ kramerst, cerrato } (@uni-mainz.de Saso.Dzeroski@i)s.si  rk6b3cam.ac.uk ® U n C e r t a i n t y Qu a n t i f i C a t i O n
[Kramer+ 2022]
etc...
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RESEARCH ARTICLE

Machine Learning Operations (MLOps):

Towards the Automatic Mathematician Overview, Definition, and Architecture

DOMINIK KREUZBERGER', NIKLAS KUHL" "2, AND SEBASTIAN HIRSCHL'
'IBM, 71139 Ehningen, Germany
*Informat Systems and Human-Centric Artificial Intelligence, University of Bayreuth, 95447 Bayreuth, Germany

Corresponding author: Niklas Kiihl (kuehl® uni-bayreuth.de)

This work was supported in part by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 491183248, and
in part by the Open Access Publishing Fund of the University of Bayreuth.

Markus N. Rabe and Christian Szegedy

Google Research
Mountain View, California, USA
{mrabe, szegedy}@google. com

ABSTRACT The final goal of all industrial machine learning (ML) projects is to develop ML products
and rapidly bring them into production. However, it is highly challenging to automate and operationalize
ML products and thus many ML endeavors fail to deliver on their expectations. The paradigm of Machine
Learning Operations (MLOps) addresses this issue. MLOps includes several aspects, such as best practices,
sets of concepts, and development culture. However, MLOps is still a vague term and its consequences
for researchers and professionals are ambiguous. To address this gap, we conduct mixed-method research,
including a literature review, a tool review, and expert interviews. As a result of these investigations,
we contribute to the body of knowledge by providing an aggregated overview of the necessary principles,
components, and roles, as well as the associated architecture and workflows. Furthermore, we provide a
comprehensive definition of MLOps and highlight open challenges in the field. Finally, this work provides
guidance for ML researchers and practitioners who want to automate and operate their ML products with a
designated set of technologies.

Abstract. Over the recent years deep learning has found successful ap-
plications in mathematical reasoning. Today, we can predict fine-grained
proof steps, relevant premises, and even useful conjectures using neu-
ral networks. This extended abstract summarizes recent developments

of machine learning in mathematical reasoning and the vision of the [KrGUZberger-l_ 2023]
N2Formal group at Google Research to create an automatic mathemati-
cian. The second part discusses the key challenges on the road ahead.

The Springer Series on Challenges in Machine Learning

[Rabe+ 2021 ] Frank Hutter

Lars Kotthoff
Joaquin Vanschoren Editors

Automated
Machine
Learning

Methods, Systems, Challenges

[Hutter+ 2018]
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Can We Automate Scientific Reviewing?

Weizhe Yuan Pengfei Liu * Graham Neubig

Carnegie Mellon University Carnegie Mellon University = Carnegie Mellon University

weizhey@cs.cmu.edu pliu3@cs.cmu.edu gneubig@cs.cmu.edu

TL;QR

This paper proposes to use NLP mod-
els to generate reviews for scientific pa-
pers . The model is trained on the ASAP-
Review dataset and evaluated on a set
of metrics to evaluate the quality of the
generated reviews . It is found that the
model is not very good at summarizing
the paper , but it is able to generate more
detailed reviews that cover more aspects
of the paper than those created by hu-
mans . The paper also finds that both
human and automatic reviewers exhibit
varying degrees of bias and biases , and
that the system generate more biased re-
views than human reviewers.("Too Long;
Quick Read”, this paragraph, is gener-
ated by our system.)

summarization models that take in papers to
generate reviews. Comprehensive experimen-
tal results show that system-generated reviews
tend to touch upon more aspects of the paper
than human-written reviews, but the generated
text can suffer from lower constructiveness for
all aspects except the explanation of the core
ideas of the papers, which are largely factu-
ally correct. We finally summarize eight chal-
lenges in the pursuit of a good review gener-
ation system together with potential solutions,
which, hopefully, will inspire more future re-
search on this subject. We make all code, and
the dataset publicly available: https:/github.
com/neulab/ReviewAdvisor as well as a Re-
viewAdvisor system: hittp://review.nlpedia.ai/
(See demo screenshot in A.2). The review of

Introduction

[Yuan+ 2021]

Can large language models provide useful feedback
on research papers? A large-scale empirical analysis.

Weixin Liang'", Yuhui Zhang'", Hancheng Cao'", Binglu Wang?, Daisy Yi Ding®, Xinyu
Yang*, Kailas Vodrahalli®, Siyu He’, Daniel Scott Smith®, Yian Yin*, Daniel A. McFarland®,
and James Zou'3>+

'Department of Computer Science, Stanford University, Stanford, CA 94305, USA
2Kellogg School of Management, Northwestern University, Evanston, IL 60208, USA
3Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
4Department of Information Science, Cornell University, Ithaca, NY 14850, USA
SDepartment of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
6Graduate School of Education, Stanford University, Stanford, CA 94305, USA

+Correspondence should be addressed to: jamesz@stanford.edu

“these authors contributed equally to this work

ABSTRACT

Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and
intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer
reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have
especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as
GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However,
the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an
automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the
guality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4’s generated
feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR
machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers
(average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human
reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human
reviewers is larger for the weaker papers (i.e., rejected /CLR papers; average overlap 43.80%). We then conducted
a prospective user study with 308 researchers from 110 US institutions in the field of Al and computational biology
to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall,
more than half (567.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it
more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated
feedback can help researchers, we also identify several limitations. For example, GPT-4 tends to focus on certain
aspects of scientific feedback (e.g., ‘add experiments on more datasets’), and often struggles to provide in-depth
critique of method design. Together our results suggest that LLM and human feedback can complement each
other. While human expert review is and should continue to be the foundation of rigorous scientific process, LLM
feedback could benefit researchers, especially when timely expert feedback is not available and in earlier stages
of manuscript preparation before peer-review.

[Liang+ 2023]



GPT-LAB: NEXT GENERATION OF OPTIMAL CHEMISTRY
DISCOVERY BY GPT DRIVEN ROBOTIC LAB

Emergent autonomous scientific research
capabilities of large language models
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Figure 1. Overview of the system architecture. The Agent is composed of multiple modules that
exchange messages. Some of them have access to APls, the Internet, and Python interpreter.
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Galactica: A Large Language Model for Science

Ross Taylor Marcin Kardas Guillem Cucurull
Thomas Scialom Anthony Hartshorn Elvis Saravia

Andrew Poulton Viktor Kerkez Robert Stojnic

Meta Al

Abstract

Information overload is a major obstacle to scientific progress. The explosive growth in
scientific literature and data has made it ever harder to discover useful insights in a large
mass of information. Today scientific knowledge is accessed through search engines, but
they are unable to organize scientific knowledge alone. In this paper we introduce Galactica:
a large language model that can store, combine and reason about scientific knowledge. We
train on a large scientific corpus of papers, reference material, knowledge bases and many
other sources. We outperform existing models on a range of scientific tasks. On technical
knowledge probes such as LaTeX equations, Galactica outperforms the latest GPT-3 by
68.2% versus 49.0%. Galactica also performs well on reasoning, outperforming Chinchilla
on mathematical MMLU by 41.3% to 35.7%, and PaLM 540B on MATH with a score of 20.4%
versus 8.8%. It also sets a new state-of-the-art on downstream tasks such as PubMedQA and
MedMCQA dev of 77.6% and 52.9%. And despite not being trained on a general corpus,
Galactica outperforms BLOOM and OPT-175B on BIG-bench. We believe these results
demonstrate the potential for language models as a new interface for science. We open

source the model for the benefit of the scientific community’.

[Taylor+ 2022]

Towards Expert-Level
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with Large Language Models
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LLEMMA: AN OPEN LANGUAGE MODEL FOR
MATHEMATICS
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Stella Biderman? Sean Welleck 57
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ABSTRACT

We present LLEMMA, a large language model for mathematics. We continue
pretraining Code Llama on Proof-Pile-2, a mixture of scientific papers, web data
containing mathematics, and mathematical code, yielding LLEMMA. On the MATH
benchmark LLEMMA outperforms all known open base models, as well as the
unreleased Minerva model suite on an equi-parameter basis. Moreover, LLEMMA
is capable of tool use and formal theorem proving without any further finetuning.
We openly release all artifacts, including 7 billion and 34 billion parameter models,
the Proof-Pile-2, and code to replicate our experiments. '

[Azerbayev+ 2023]
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Augmenting Scientific Creativity with an Analogical Search
Engine

Creative Research Question Generation for
Human-Computer Interaction Research
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Abstract

It is essential to develop innovative and original research questions/ideas for interdisciplinary research fields, such as
Human-Computer Interaction (HCI). In this work, we focus on discussing how recent natural language generation (NLG)
methodologies can be applied to promote the formulation of creative research questions. We collect and curate a dataset that
contains texts of RQs and related work sections from HCI papers, and introduce a new NLG task of automatic HCI research
question (RQ) generation. In addition to applying common NLG metrics used to evaluate generation accuracy, including
ROUGE and BERTScore, we propose two sets of new metrics for evaluating the creativity of generated RQs: 1) DistGain and
DiffBS for novelty, and 2) PPLGain for the level of surprise. The task is challenging due to the lack of external knowledge.
We investigate four approaches to enhance the generation models with (1) general world knowledge, (2) task knowledge,
(3) transferred knowledge, and (4) retrieved knowledge. The results of the experiment indicate that the incorporation of
additional knowledge benefits both the accuracy and creativity of RQ generation. The dataset used in this study can be found
at: https://github.com/yiren-liu/HAI-GEN-release.

Analogies have been central to creative problem-solving throughout the history of science and technology.
As the number of scientific papers continues to increase exponentially, there is a growing opportunity for
finding diverse solutions to existing problems. However, realizing this potential requires the development
of a means for searching through a large corpus that goes beyond surface matches and simple keywords.
Here we contribute the first end-to-end system for analogical search on scientific papers and evaluate its
effectiveness with scientists’ own problems. Using a human-in-the-loop Al system as a probe we find that our
[ Liu+ 202 O] system facilitates creative ideation, and that ideation success is mediated by an intermediate level of matching

on the problem abstraction (i.e., high versus low). We also demonstrate a fully automated Al search engine
that achieves a similar accuracy with the human-in-the-loop system. We conclude with design implications
for enabling automated analogical inspiration engines to accelerate scientific innovation.

[Kang+ 2020]
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Nobel Turing Challenge: creating the engine for scientific
discovery
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Scientific Discovery

Hector Zenil and Ross D. King

Hiroaki Kitano

[Zenil+ 2023]

Scientific discovery has long been one of the central driving forces in our civilization. It uncovered the principles of the world we
live in, and enabled us to invent new technologies reshaping our society, cure diseases, explore unknown new frontiers, and

hopefully lead us to build a sustainable society. Accelerating the speed of scientific discovery is therefore one of the most important
endeavors. This requires an in-depth understanding of not only the subject areas but also the nature of scientific discoveries
themselves. In other words, the “science of science” needs to be established, and has to be implemented using artificial intelligence
(Al) systems to be practically executable. At the same time, what may be implemented by “Al Scientists” may not resemble the
scientific process conducted by human scientist. It may be an alternative form of science that will break the limitation of current
scientific practice largely hampered by human cognitive limitation and sociological constraints. It could give rise to a human-Al
hybrid form of science that shall bring systems biology and other sciences into the next stage. The Nobel Turing Challenge aims to
develop a highly autonomous Al system that can perform top-level science, indistinguishable from the quality of that performed by
the best human scientists, where some of the discoveries may be worthy of Nobel Prize level recognition and beyond.

npj Systems Biology and Applications (2021)7:29; https://doi.org/10.1038/s41540-021-00189-3
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Problem

) What is the capital of France?

‘{‘\. '_:”'} J

Background: _
S P

We use a Large Language Model (LLM), specifically GPT-4, which
takes any text as input and outputs text in response. We input
instructions, called prompts, to the LLM, and the LLM generates text
based on those instructions.

@ The capital of France is Paris.
Problem:

The issue is that the large language model may output sentences not
directly related to the instructions.

For example, if you enter the sentence "What is 1 + 1?" into the LLM,
it will often respond with "The answer to that question is 2." In this
response, what we really want is just the "2" part. The sentence "The
answer to that question is" is extraneous, and we would prefer the
LLM to output only the part that directly related to the question, "2".

The reason this is problematic is that we must perform post-
processing to evaluate the output. For instance, if you want to
evaluate the LLM's performance on a dataset of math problems, and
a sample is a question "What is 1 + 1?" paired with the correct
answer "2", we must check whether the LLM's answer matches "2". If
the LLM outputs an extra sentence besides "2," even if the answer is
actually correct, it may be judged as incorrect due to the apparent
mismatch.

It is challenging to address this issue with a predefined post-
processing method, as it is not known in advance what kind of
extraneous text will be output.

To sum up, the problems are as follows:

- The large language model outputs sentences that are not directly
related to the instructions.

- Predefined post-processing methods are problem/answer-specific
and not general.




Hypothesis Candidates Generation

How can we solve the problem described below? Please provide
multiple hypotheses in list format.

Problem:
{problem}

Hypothesis Selection

Please select the easiest-to-test hypothesis from among the
hypotheses below.

Hypotheses:
{hypotheses}

fDAFR CTEERX D KX DILNANTIETD




Hypothesis Reformulation

To test the hypothesis below, ensure that it is specific enough to be
testable. Formulate or model your hypothesis in concrete terms.
Clearly express all elements of the hypothesis using text, physical
entities, mathematical formulas, computer programs, or any other
suitable forms, depending on the verification method you're using.
If your verification involves a mathematical process, also articulate

the hypothesis in mathematical terms. If you're proposing something
new, define it in concrete terms.
Once you've followed these guidelines, present both the original

hypothesis and your refined version, whether that is a formulated
hypothesis, a representation, or a model.

Hypothesis:
{hypothesis}




Verification Plan Design

Given the problem and accompanying hypothesis below, how can we
verify the hypothesis? Please provide a detailed verification plan
composed of structured sentences.

Ensure that the plan is sufficiently detailed and concrete so that it can
be executed by a large language model and computer.

Outline the procedure in a step-by-step manner. If necessary, break
down a single task into multiple sub-tasks and list them hierarchically.

The verification plan should be realistic and feasible, making use of
existing resources rather than requiring the creation of new ones.

Problem:
{problem}

Hypothesis:
{hypothesis}




Verification Code Generation

You are a helpful assistant who should strictly adhere to the following
guidelines:

- ¥**DO NOT** include "api-key in the code, as it has already been
specified.

- **DO NOT** output placeholders, end up with comments, or use
just a sequence of dots without fully implementing the contents of the
code. Ensure that you fully implement the contents.

You are an excellent engineer. In accordance with the verification plan
provided below, please output Python code to execute said plan. Note
that you must comply with the instructions above.

Verification plan:
{verification_plan}




Instruction Following

Please regenerate the same Python code below except for the
following modifications:

- ¥**¥DO NOT** include api-key in the code, as it has already been
specified.

- **DO NOT** output placeholders, end up with comments, or use
just a sequence of dots without fully implementing the contents of the
code. Ensure that you fully implement the contents.

Python code:
{verification_code}




Package Install

Output an executable Python code that installs the required package
to run the code below.

Make sure that the installation code is executable and does not cause
any errors when run as a Python script, rather than as a Jupyter
Notebook or from the command line.

Be sure to import all necessary libraries, including standard libraries,
into the generated code.

Output only the code to install the package, not the code to run the
package.

Python code:
{verification_code}




Verification Code Update

When I ran the python code below, I got the error below. Please
output improved code to avoid this error.

Please output the entire code without omission, including the parts I
have already provided.

Python code:
{verification_code}

Error message:
{error_message}




Generated Hypothesis Candidates

1. Hypothesis: Refining the Prompting Strategy

- We could refine the way we prompt the LLM. For instance, instead
of asking "What is 1 + 1?", we could ask "Provide a one-word
answer: What is 1 + 1?". This might encourage the model to
generate more concise responses.

2. Hypothesis: Training a Post-Processing Model

- We could train a separate model to post-process the LLM's
output. This model would learn to extract the relevant information
from the LLM's responses, regardless of the extraneous text.

3. Hypothesis: Fine-Tuning the LLM

- We could fine-tune the LLM on a dataset where the correct
responses are only the direct answers to the questions. This might
encourage the model to generate more concise responses.

4. Hypothesis: Implementing a Reward System

- We could implement a reward system that encourages the LLM to
generate responses that are directly related to the instructions. This
could be done using reinforcement learning techniques.

5. Hypothesis: Using a Question-Answering Model

- Instead of using a general-purpose LLM, we could use a model
specifically designed for question-answering tasks. These models are
typically trained to provide concise, direct answers to questions.

6. Hypothesis: Implementing a Response Length Limit

- We could implement a response length limit, forcing the LLM to
generate shorter responses. This might encourage the model to only
include the most relevant information in its responses.

7. Hypothesis: Using a Multi-Step Process

- We could use a multi-step process where the LLM first generates
a response, then a second model or process refines or shortens that
response to only include the most relevant information.

Generated Hypothesis

Hypothesis: Refining the Prompting Strategy
- We could refine the way we prompt the LLM. For instance, instead
of asking "What is 1 + 1?", we could ask "Provide a one-word answer:

Whatis 1 + 1?". This miht encourage the model to generate more
concise responses.

Reformulated Hypothesis

Original Hypothesis:

We could refine the way we prompt the LLM. For instance, instead of
asking "What is 1 + 1?", we could ask "Provide a one-word answer:
What is 1 + 1?". This might encourage the model to generate more
concise responses.

Refined Hypothesis:

The refinement of the prompting strategy, specifically by requesting a
one-word answer, will result in more concise responses from the
Language Learning Model (LLM).

To test this hypothesis, we can use a comparative analysis between
the responses generated by the LLM when prompted with a standard
question and when prompted with a one-word answer request.

Mathematically, this can be represented as:

Let's denote the standard prompt as P1 and the one-word answer
prompt as P2. The responses generated by the LLM for these prompts
are denoted as R1 and R2 respectively.

The hypothesis can be tested by comparing the length (in words) of
R1 and R2. If the length of R2 is less than or equal to the length of
R1, the hypothesis is supported.

Mathematically, this can be represented as:

If Length(R2) < Length(R1), then the hypothesis is supported.

This hypothesis testing can be implemented using a computer
program that prompts the LLM with P1 and P2, captures the
responses R1 and R2, calculates their lengths, and compares them.




Generated Verification Plan

Verification Plan:

1. Data Collection:

1.1. Prepare a dataset of questions that can be answered in one
word. This dataset should be diverse and cover different types of
questions to ensure the robustness of the test. For example, it can
include mathematical questions, factual questions, yes/no questions,
etc.

1.2. For each question in the dataset, create two versions of
prompts: a standard prompt (P1) and a one-word answer prompt
(P2). For example, if the question is "What is the capital of France?",
P1 would be "What is the capital of France?" and P2 would be
"Provide a one-word answer: What is the capital of France?".

2. Experiment Execution:
2.1. Input each P1 into the LLM and record the response as R1.
2.2. Input the corresponding P2 into the LLM and record the
response as R2.
2.3. Repeat steps 2.1 and 2.2 for all questions in the dataset.

3. Data Analysis:

3.1. For each pair of responses (R1, R2), calculate the length of
the response in words.

3.2. Compare the length of R1 and R2. If the length of R2 is less
than or equal to the length of R1, mark it as a success; otherwise,
mark it as a failure.

3.3. Calculate the success rate as the number of successes divided
by the total number of questions in the dataset.

4. Hypothesis Testing:

4.1. If the success rate is significantly higher than 50%, the
hypothesis is supported.

4.2. If the success rate is not significantly higher than 50%, the
hypothesis is not supported.

5. Reporting:

5.1. Prepare a report summarizing the methodology, results, and
conclusion of the test.

5.2. Include in the report any observations about the types of
questions for which the one-word answer prompt was particularly
effective or ineffective.

5.3. Discuss potential improvements to the prompting strategy
based on the results of the test.

6. Review and Refinement:

6.1. Based on the results and observations, refine the prompting
strategy if necessary.

6.2. Repeat the test with the refined prompting strategy to verify
its effectiveness.




import openai
t pandas as pd

impor

questions = ["What is the capital of France?", "What is 2+27",
"Is the sky blue?", "Who wrote ’'To Kill a Mockingbird??7?",
"What is the chemical symbol for gold?"]
prompts = [(q, f"Provide a one-word answer: {ql}") for q in questions]
responses = []
for pl, p2 in prompts:
response_pl = openai.Completion.create(
engine="text -davinci -002", prompt=pl, max_tokens=3
)
rl = response_pl.choices [0].text.strip()
response_p2 = openai.Completion.create(
engine="text -davinci -002", prompt=p2, max_tokens=3
)

r2 = response_p2.choices [0].text.strip()
responses.append ((r1, r2))

successes = 0

for rl, r2 in responses:
len_rl = len(rl.split())
len_r2 = len(r2.split())

if len_r2 <= len_rl:
successes += 1

success_rate = successes / len(questions)

if success_rate > 0.5:
print ("The hypothesis is supported.")

else:

print ("The hypothesis is not supported.")
report = pd.DataFrame(responses, columns=["R1i", "R2"])
report ["Success"] = report.apply(

lambda row: ".F:I'.(rOU[“R?"]+Eplit()) \
<= len(row["R1"].split()), axis=1
)

report.to_csv("report.csv"

EEEEE————————————————————————————..|

import subprocess
import sys

def

install (package):
subprocess.check_call([sys.executable, "-m", "pip",

package])

install (’openai’)
install (’pandas’)
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. Open Interpreter

A new way
[0 use computers

Open Interpreter lets LLMs run code on your computer to complete tasks.

% on Github Watch Video ./

[https://openinterpreter.com/]
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PROMPT2MODEL:
Generating Deployable Models from Natural Language Instructions

Vijay Viswanathan'*, Chenyang Zhao'**,
Amanda Bertsch!, Tongshuang Wu'!, Graham Neubig'
ICarnegie Mellon University, >Tsinghua University

Abstract

Large language models (LLMs) enable system
builders today to create competent NLP sys-
tems through prompting, where they only need
to describe the task in natural language and
provide a few examples. However, in other
ways, LLMs are a step backward from tradi-
tional special-purpose NLP models; they re-
quire extensive computational resources for
deployment and can be gated behind APISs.
In this paper, we propose Prompt2Model, a
general-purpose method that takes a natural
language task description like the prompts pro-
vided to LLMs, and uses it to train a special-
purpose model that is conducive to deploy-
ment. This is done through a multi-step pro-
cess of retrieval of existing datasets and pre-
trained models, dataset generation using LLMs,

Input: Prompt (task description + optional examples)

| Answer questions given context from a
& relevant Wikipedia article.

Prompt2Model

Generate Retrieve

Data Pretrained model

g\ Output: Deployment-ready model
BERT Score: 94.0, ChrF++: 58.9, EM: 61.5

_|Question: What does LPC stand for?
ontext: e psychoacoustic masking codec was...
Klic The psycl i king cod

A Answer: linear predictive coding

Figure 1: Prompt2Model is a framework for generat-
ing a small yet accurate model from a prompt.

[Viswanathan+ 2023]
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