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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: Early Days
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Cd-doped water Vo*P e 4

0.4 ton, 100 PMTs by Reines & Cowan (Nobel Prize 1995)

(1956) First neutrino detection
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NOVA - FNAL E929
Run: 18975/ 43

Event: 628855 / SNEWSBea(SIow

UTC Mon Feb 23, 201

14:30:1.383526016 ® Several hundred cosmic rays crossed the detector

5ms of data at the NOVA Far Detector

(the many peaks in the timing distribution below)

nBoo

75 cm

s

Run 3493 Event 41075,

Each pixel is one hit cell
Color shows charge digitized from the light

ctober 23*¢, 2015




5ms of data at the NOVA Far Detector
Each pixel is one hit cell
Color shows ch digitized from the light

NOVA - FNAL E929

Run: 18975/ 43

Event: 628855 / SNEWSBeatSlow

UTC Mon Feb 23, 2015

14:30:1.383526016  Several hund

(the many pe!

Run 3493 Event 41075, October 23™¢, 2015



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

MicroBooNE
~87 ton (school bus size

Liquid Argon Time Projection Chamber

 High resolution photograph of charged particle trajectories
» Calorimetric measurement + scalability to a large mass 2015




Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers

1 AL
D e AN

uBooNE’ =

Topological shape
difference is a major
distinction for “shower”
particles

T

LSl

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers

ai.AG
uBooﬁNQ = ® o s
®
3 hee
Trajectory ends are @
distinct, and useful for T
seeding particle e'e
clustering and trajectory L ® o
fitting e &
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Run 3493 Event 41075, @ctober 23*¢, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers
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D e AN

MBOON.E% 1o

ady Many, local kinks

caused by Multiple Coulomb

». Scattering process can be
used for momentum
estimation

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers

uBooN!? .
2L~ i,
- Small branches on muon-like
trajectories are knocked-off
. e electrons, useful key for the
gm0 direction

Run 3493 Event 41075, October 237, 2015
75 cm



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Ghambers S W ) .
MBOONE =
Energy deposition - S;th‘i’iig
patterns (dE/dX) : - N

vary with particle mass PN .
& momentum, useful e
for analysis

e-vs.y
using dE/dX

Run 3493 Event 41075, October 237, 2015

75 cm



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

ol AL

N [ o \

Do you see neutrino interaction here?

Cosmic Data : Run 6280 Event 6812 May 12th, 2016



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

1 AL
e AN

Nope :) In this detector, only ~1/700 beam neutrino interacts

nBooNE

Cosmic Data : Run 6280 Event 6812 May 12th, 2016



Machine Learning & Computer Vision in Neutrino Physics

Time Projection Chambers

ol AL

N [ o \

... and 1/700 have many variations in hi-resolution imaging...

MicroBooNE
Simulation

nBooNE

Cosmic Data : Run 6280 Event 6812 May 12th, 2016



Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (3D ones)

DUNE-ND: on average ~dozen neutrino interactions per event
Detector: pixelated LArTPC for 3D imaging for high overlaps
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Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

ol AR

0 [y o \

How to write an algorithm to
identify a cat?

T =-.__..veryhardtask..

~

19




Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

ol AR

0 [y o \

Development Workflow for non-ML reconstruction
1. Write an algorithm based on physics principles

;\:::‘ \—J; (13 )
pEy ‘l l‘ — C a t
At

algorithm

collection of
A cat = i 20
(or, a neutrino) certain Sha'peS



Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino! — .

DN

Development Workflow for non-ML reconstruction

Run on simulation and data samples

Observe failure cases, implement fixes/heuristics

Iterate over 2 & 3 till a satisfactory level is achieved

Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

e
| “ \||\ “Cat”
/' ' algorithm

A

2 E A cat = collection of 3

Partial cat [ .
(escaping the detector) Stretching cat (Nuclear FSI) (or, a neutrino) certain ShapeS



Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

1 A

DM

“Machine learning”

e Automatization of step 2, 3, and 4.
e Well-defined error propagation (step 5).
e (Can optimize the whole chain for physics.

Next: what kind of ML algorithms? 2




Machine Learning & Computer Vision in Neutrino Physics
My Research

ol AL

F R AN
Machine Learning for Data Reconstruction
e Goal: high level abstract information (like image classification)

Electron’

> Neutrino

P

Input Data High-level
Output

23



Machine Learning & Computer Vision in Neutrino Physics
My Research

ol AL

. . . Y L
Machine Learning for Data Reconstruction

o

e How: design the algorithm = data transformation architecture that

extracts a hierarchy of physically meaningful features (evidences)

Electrop g
Multi-task Ngyt;ipg ,.
Algorithm e

Y

Kinematics

Inferegce , E Output

... becomes
interpretable! 24




Machine Learning & Computer Vision in Neutrino Physics
My Research

ol AL

. . . Y L
Machine Learning for Data Reconstruction

o

e How: design the algorithm = data transformation architecture that

extracts a hierarchy of physically meaningful features

[ Pixel Feature } [ Pixel Clustering ] [ Particle Clustering ]

The Rest: describe the chain .
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ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Distinguish 2 distinct particle topologies: showers v.s.
Critical to deploy different algorithms for clustering pixels in the next stage.

’ 30 cm % T
i Real Data Image | 10 / Network Output
COSH]IC/- . .
. £ 5 ;
/ N\

w 08

/'J \
/ \\ .
\ / ' ’
/ /
. Y
\. cosmic Yy \ U
P‘ ‘
cosmic _. >
v -
uBoo@ Vi - pBoo P
B BNB Data : Run 5419 Event 6573 March 14th, 2016 e BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input  wisse. Network Output


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility — .

DM

Architecture: U-Net + Residual Connections

input

tconv-s2-fde

softmax
Residual

Number pf strided . connections
convolutions, convolution .
layers, residual connections, - =» Concatenation

differ in impementations

L=
1

Image credit: Laura Domine @ Stanford



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

CNN applies
dense matrix
operations

In photographs,
all pixels are
meaningful

grey pixels = dolphins,
blue pixels = water, etc...

29



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

CNN applies <1% of pixels

dense matrix

are non-zero in

operations LArTPC data

In photographs, . S Zero pixels are
all pixels are ; Tl meaningless!

meaningful

. . . Figures/Texts: courtesy of
grey pixels = dolphins, Empty pixels = no energy  aura Domine @ Stanford
blue pixels = water, etc...

Figure credit: Laura Domine @ Stanford 30



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility — .

o ke AN

“Applying CNN” is simple, but is it scalable for us?

<1% of pixels
are non-zero in
LArTPC data

Zero pixels are

meaningless!
Figures/Texts: courtesy of
Laura Domine @ Stanford

CNN applies
dense matrix
operations

In photographs,
all pixels are
meaningful

o Scalability for larger detectors
m Computation cost increases linearly with the volume
m But the number of non-zero pixels does not

Figure credit: Laura Domine @ Stanford

31



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Sparse Submanifold Convolutions
Original Activations Filter Reach Output Activations




ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Sparse Submanifold Convolutions
Original Activations Filter Reach Output Activations

33




ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

Our data is locally much more dense
than ShapeNet 3D dataset

%— A o
4
o

... which makes convolution filter
more effective on our data as long as
the sparsity issue is handled

Image credit: Laura Domine @ Stanford



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

1 A

DM

Sparse U-ResNet fits more data in GPU + good scalability

DUNE-FD is piece of
,,...—.——w—*"/*_—"—-—. cake (larger volume but
0 less non-zero pixels)
0 200 400 600 800 1000
Figure credit: Laura Domine @ Stanford BatCh size

2D I
[ | =210 images fits the —e— Sparse
| 1 Whole MicroBooNE detector
/ - —— Dense
| 1
, I
— ) |
@batch size 88 8 -------- - il et (A s Yl
sparse uses <15 : 16Gb = max. memory .
93 | e | (P100/V100 GPU @ HPc) Can handle easily the
x less memory = : whole ICARUS detector
than dense and €10 i which is x6 larger than
gor?putatlon Is %) | MicroBooNE.
X faster |
I
|
|

35



ML-based Neutrino Data Reconstruction Chain

Stage 1-a: Pixel Feature Extraction + Scalablility

Sp arse Sub-m anifold Type | Proton Mu/Pi Shower Delta | Michel

N Acc. 0.99 0.98 0.99 0.97 0.96
Convolutional NN
e Public LArTPC simulation

o Particle tracking (Geant4) + diffusion, no
noise, true energy ‘

Com »itcr Scirirce  Cow iR Visicn ensl Poti~r Poc—gni o

Scalable Deep Counvolutionai Neural Networks for Sparse,

Mu/pi
Proton
EM Shower

[ Delta Rays
PhysRevD.102.012005 presented @ ACAT 201 N Michel

e Memory reduction ~ 1/360 \

o WM:MM

e Compute time ~ 1/30 . —
e Handles large future detectors L=



https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.102.012005&v=f3bb7570
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: input & output

1 A

N [ o \

Stage 1-a Input Stage 1-a Output




ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

ol A7y
N L

Point Proposal
_ Network (PPN)

.. extension of U-ResNet
with 3 CNN blocks

Residual connections

- -» Concatenation

See arxiv:2006.14745



https://arxiv.org/abs/2006.14745

ML-based Neutrino Data Reconstruction Chain

Stage 1-b: Particle Endpoint Prediction

|

I attention
I mask

I _______

attention
mask

See arxiv:2006.14745

input

tconv-s2-fdec

softmax
— Residual conr
- -=» Concatenatio

) 9
y
o«° R
score threshold < 7
LY 500
)00

unpool

add labels @ train

PPN1 generates an
attention mask at the
lowest resolution

o Multiplying by
® attention mask


https://arxiv.org/abs/2006.14745

ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

PPN1
attention
mask

PPN2
attention
| mask

See arxiv:2006. &245

input

tconv-s2-fdec

softmax
— Residual conr

- -=» Concatenatio

score threshold

unpool

add labels @ train

o Multiplying by
® attention mask

PPN2 generates an
attention mask at the
intermediate resolution


https://arxiv.org/abs/2006.14745

ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

700
600
500
a0
— Residual conr
RN
- --» Concatenatio I
f y
i } score threshold =
i i ‘ i
: =~
attention “f | ® add labels @ train
mask | |

. Muliphing by PPN makes the final
M | prediction (point type +

PPN2
attention

mask

See arxiv:2006.14745

coordinate regression)



https://arxiv.org/abs/2006.14745

ML-based Neutrino Data Reconstruction Chain

Stage 1-b: Particle Endpoint Prediction

1 A

0 [y o \

06.8% of predicted points within 3 voxels of a true point

e 68% of true points found within the radius of 0.12 cm

e Traditional (nominal) reconstruction method finds 90% of predicted points within
17 voxels, and 68% of true points found within the radius of 0.74cm

See arxiv:2006.14745

[ To closest true point
1 To closest predicted point

v.

4 6 8 10
Distance (px)

1.0

"E o
Q

g
2
5_920.6
n o
5 >
8 50.4 =10"
*d - 5
2502
D_H—

0.0 -10°

0.0 0.2 0.4 0.6 0.8 1.0
Distance to closest true point


https://arxiv.org/abs/2006.14745

ML-based Neutrino Data Reconstruction Chain
Stage 1: input & output

Stage 1 Input




ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

Simple approach: path-finding between PPN points

e MST to find the “shortest” path between PPN points to cluster pixels
e Works well! BUT it depends on PPN performance directly + not learnable



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Learnable approach: clustering in the embedding space

e Use CNN to learn a transformation function from the 3D voxels to the embedding
space where clustering can be performed in a simple manner

Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML-based Neutrino Data Reconstruction Chain

Stage 2-a: Dense Pixel Clustering

ol A7y
ad b M\
Encoder Embedding Decoder Embeddings .
Scalable Particle
Res 3x3 I TR B RO .
e Instance Clustering
Decony 22 @-------- - > Vs "ﬁ' 7 : :
— I Tk using Embedding

ResNet Block Definition

Res 3x3

________
SubConv 3x3
1

SubConv 3x3

B }

Seediness Decoder

(SPICE)

e Embedding decoder learns
transformation

e Seediness decoder
identifies the centroids

e During training, loss is
conditioned so that the
points that belong to the
same cluster follow a
normal distribution



ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering
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https://arxiv.org/abs/2007.03083

ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

croAn
ad b M\
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https://arxiv.org/abs/2007.03083

ML-based Neutrino Data Reconstruction Chain

Stage 2-a: Dense Pixel Clustering

1 A

Pixels clustered into trajectory

fragments using SPICE

Total

1.00 | |

0.98 i
© 096 J]
o
[&]
»n

0.94

0.92

ARI Purity Efficiency

Score Type

N [ o \
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o
o 2 =
@]
%
\-—-
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N
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See arxiv:2007.03083 ’ >.



https://arxiv.org/abs/2007.03083

ML-based Neutrino Data Reconstruction Chain
Stage 2-a: input & output

1 A

0 [y o \

Stage 2-a Input Stage 2-a Output




ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

1 A

0 [y o \

Identifying 1 shower ... which consists of many fragments

Fragments 500 /

‘.

N
/



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

Identifying 1 shower ... which consists of many fragments
e Interpret each fragment as a graph node + edges connect nodes in the same cluster

Fragments 500 /

‘n

L& :
S A
‘,-’.) 400 { ™~ \
Input Graph : SR \ .
2 3 .

( K 3
g
- Feature O [m]
ﬂ extraction =
Sedn r ' @ 8 |
14
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2

.‘Ja
" > -~
25 > G Z 5

350 72
200 2
20
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ML-based Neutrino Data Reconstruction Chain

Stage 2-b: Sparse Fragment Clustering

ol A>

d e M\

Identifying 1 shower ... which consists of many fragments

e Interpret each fragment as a graph node + edges connect nodes in the same cluster
e Cast the problem to a classification of node (e.g. particle type) and edge (clustering)

Fragments

‘n

o

2

y —
g
eature . .
extraction =
» 2 ,I
\\d/
I\;

Input Graph
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N\
NNC

Node Update

0
o®
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Metal ayer

Edge Update

Output graph Groups
- Q ~
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Primaries




ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

1 A

Graph-NN for Particle /

Aggregation (GrapPA) o e

Input:
e Fragmented EM showers N { .

350

AT N

250 °

350 .
200 00
450

a [ 4 S00
0 S50
¢ 60p
6 50

Q©
© o

&® > See arxiv:2007.01335
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https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain

Stage 2-b: Sparse Fragment Clustering o -
oy = Tt
Graph-NN for Particle /
Aggregation (GrapPA)
450
Input:
e Fragmented EM showers “ —
Node features: o /
e Centroid, Covariance matrix, PCA - ' / \
e Start point, direction (PPN) :

250

250
200 0o
450

<0
b / Sop
0 S50
Y, 55() 500
6;
o® X

& See aniv:2007.01335



https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering — .

Graph-NN for Particle /
A tion (GrapPA
goregation (GrapPA) o et \

Input: ‘ \
e Fragmented EM showers N " \
Node features: o Al .

e Centroid, Covariance matrix, PCA " ‘ = &\;
e Start point, direction (PPN) ' AN

Input graph: - =

e Connect every node with every other node i 1 fio
(complete graph) = ¢

o0 O

&

2% See arxiv:2007.01355



https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain

Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle
Aggregation (GrapPA)
Input:

e Fragmented EM showers

Node features:
e Centroid, Covariance matrix, PCA
e Start point, direction (PPN)

Input graph:
e Connect every node with every other node
(complete graph)

Edge features:
e Displacement vector
e Closest points of approach

500

300

250

250

400

&0

0

&

&

s 0

See arxiv:2007.01355



https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

Graph-NN for Particle /

Aggregation (GrapPA) 0
. 45 .k pre ‘ \
Message passing (MP): ’\
e Meta layer (arxiv:1806.01261) . / {
e [KEssentially two 3-layer MLPs (BatchNorm . J‘f \

+ LeakyReLU) for edge feature update and = :
node feature update . ( X
e 3times MP (=Edge+Node feature update) ’ 0N ) -

Target: = z ¥
e Prediction of adjacency matrix 260 1
representing valid edges (=true partition) i =5 V' o
e Apply cross-entropy loss o 530

Y 550 60p X

400
950

6 50

For more studies, see our paper o

&

0

25 See arxiv:2007.01355



https://arxiv.org/abs/2007.01335
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

ol AR
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T t Label Edge Prediction
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https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

ol A7y
e AN
Clusterlng using GrapPA Edge Prediction
e Mean purity and efficiency > 99%
e Sufficient for moving to the next
stage (particle analysis) 0 A~
0.96 0.97 0.98 0.99 1.00 0 .
ARI + |
Purity —— £ a0
Efficiency ——i
1 ARI
2 1 Purity s
10° [ Efficiency
290 -
10" w0 . S v
Y } 0 60p ' A
0.0 0.2 0.4 0.6 0.8 1.0 = w
Metric o <)


https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

=1 AL
0 | B o \

Start ID using GrapPA Node prediction

e Important to identify the “primary
fragment” (=shower start) 4
e >90% classification accuracy 50 b -

0.0 0.2 0.4 0.6 0.8 1.0

400 [
Secondary }
74
. 50
Primary 4 % \ //
10” [ Secondary 300 “4”@.\
i L1 Primary { .f\;?,
10 [
} 250 \\V,
103
. 350
102 =i o8 e
; PJJ 0 Sop ’
10 Jd = JJ*[J—' ,_J'"__;— 500 550
y 50 60p X
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https://arxiv.org/abs/2007.01335

ML-based Neutrino Data Reconstruction Chain
Stage 2: input & output

1 A

0 [y o \

Stage 2 Input Stage 2 Output




ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

1 AL
e AN

? Identifying Each Interaction?

This task can be casted to the same task
. already solved using GrapPA!

o / e Interaction = a group of particles that
o 2 il '<\ . / shared the same origin (i.e. neutrino
‘| interaction)

300 s f \.J h
I st e Edge classification to identify an
‘ interaction

e Node classification for particle type
300 = o h ID




ML-based Neutrino Data Reconstruction Chain

Stage 3: Interaction Clustering

700
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ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

ol Ay
Dk M
100 IT: T T T T Predicted Interaction
L 2
700
0.99 ¢ s 5
é 0.98 500
—— ARI 400
0.97 —— Efficiency 1
—— Purity 300
1-5  6-10 11-15 16-20 > 20 20
Number of interactions 460
Promising result to address LI
DUNE-ND reconstruction challenge . e S
(~20 neutrino pile-up)



ML-based Neutrino Data Reconstruction Chain
Stage 3: input & output

Stage 3 Input




.. Wrapping up ..




ML-based Neutrino Data Reconstruction Chain
Wrapping up...

1l A7y
ad b M\
PPN B Points Primaries
N ! % 4
1:([ SN I A A =
& ,\_,) o
B : E : Semantics Particles Interactions
| K N7 % 7
- :D: o i i
: \ \ X
N kg T W
: UResNet : Clusters Ildentification
TN ] \ N '[ e 7\ \ ; Y
D: \
- l it
- End-to-End optimizable full chain!
] e ~1 week to train the full chain on a single Vioo GPU
L e Traditional reconstruction chain takes dozens of

- people, months to years long effort



Machine Learning & Computer Vision in Neutrino Physics
WAKE UP WAKE UP WAKE UP

Summary
e Neutrino detector trend: hi-res. particle imaging

e Analysis trend: computer vision algorithms
o Benefit the hi-resolution image = lots of heuristics (in non-ML)
o ML-based approach has shown strong promise

e ML-based data reconstruction approach
o especially for “busy” detectors ... my research :)
o Working on implementing inductive-bias/causality (“physics”)

e Other active areas: data/sim domain discrepancy adaptation
o minimize the discrepancy, identify the source, quantify uncertainty



FIN
Machine Learning for Particle Image Analysis

i

Questions?

70



Backup Slides
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DM

SPICE



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

1 A

Y L
Instance+Semantic Segmentation

e Mask R-CNN ... a popular solution, many applications in science/industries
o Object (=instance) detection + instance pixel masking in a bounding box




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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Instance+Semantic Segmentation

e Mask R-CNN ... a popular solution, many applications in science/industries
o Object (=instance) detection + instance pixel masking in a bounding box

o Issue: instance distinction is affected by BB position/size
o Another family: Single-Shot-Detection (SSD) based (not covered here)

Occlusion issue

The overlap rate of
particles is very high
especially for our signal
(neutrinos) with an event

vertex. 73




ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering
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Y L
Instance+Semantic Segmentation

e Mask R-CNN ... a popular solution, many applications in science/industries

o Object (=instance) detection + instance pixel masking in a bounding box

o Issue: instance distinction is affected by BB position/size
o Another family: Single-Shot-Detection (SSD) based (not covered here)
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
e Three component loss: pull together points that belong to the
same cluster, keep distance between clusters, and regularization

L = alvar + BLaist + 7Lreg’ {—> inter-cluster push force
1 — ‘/. <= intra-cluster pull force
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Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551



https://arxiv.org/pdf/1708.02551.pdf

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
e Three component loss: pull together points that belong to the
same cluster, keep distance between clusters, and regularization

3
Q5-,) e

Input: 3D pixel energy depositions Output: 3D pixel clusters
(DBScan in hyperspace)
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

D
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

ol AR

Especially great for: “a rare event in a quiet detector”

e Quiet = can assume “almost always neutrino”
o e.g.) no cosmic-ray background

e Rare = “only 1 neutrino”

79



Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”

e Quiet = can assume “almost always neutrino”
o e.g.) no cosmic-ray background

e Rare = “only 1 neutrino”
o the same “image classification architecture” can be applied for...
m neutrino flavor (topology) classification
m energy regression (image to one FP32 value)
m vertex regression (image to three FP32 value)
m etc. ...
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

ol AR

N [ o \

Especially great for: “a rare event in a quiet detector”

... but most of LArTPC detectors are not ...
e MicroBooNE, ICARUS, SBND, ProtoDUNE ... physics in next 5 years
o Busy: typically dozens of cosmic rays in each event
e DUNE-ND

o Not rare (busy): a dozen of neutrino interaction pile-up in each event )



Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

1 A~

N L

Image classification/regression: straight to “flavour & energy”
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

=1 AL
0 | B o \

... but also challenging: a huge single-step of information reduction

== va 1his is electron neutrino.
=4 EnergyisieV.

... would be nice to know why you thoughtso ...



Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction
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| MaskR*CNN~—
arXiv:1703.06870

Image Context Identification



Machine Learning & Computer Vision in Neutrino Physics

Why Data Reconstruction e
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air.

Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Detector noise! ]

03(\

%

Proton,
Proton,
and muon!

So this is likely
2p1u with one
anomaly cluster
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection & Semantic Segmentation
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arXiv:1203.06870 =

Image Context Identification



Machine Learning & Computer Vision in Neutrino Physics

Hierarchy and Correlation of Context .
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Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection for Neutrino ID

Neutrino Detection w/ R-CNN
(MicroBooNE LArTPC)

JINST 12 Po3011 (2017)
arXiv:1611.05531

Nu: 0.926

| > “""i}" e §

MlcrOB OONE | Task: propose a rectangular box that
contains neutrino interaction

Simulation + Data Overlay ' [N



https://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531

Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID B

F R AN

Separate electron/positron energy depositions from other types at raw waveform level.
Helps the downstream clustering algorithms (data/sim comp. @ arxiv:1808.07269)

> 30cm
—4 Real Data Image | - / Network Output

b b ” © PRD 99 092001
& £ arXiv:1808.07269 /‘
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w 08
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\. cosmic Yy \ U
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B == e BNB Data : Run 5419 Event 6573 March 14th, 2016

BNB Data : Run 5419 Event 6573 March 14th, 2016

Network Input Network Output =


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269

Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Architecture: U-Net + Residual Connections

input

tconv-s2-fde

softmax
Residual

Number pf strided . connections
convolutions, convolution .
layers, residual connections, - =» Concatenation

differ in impementations

L=
1

Image credit: Laura Domine @ Stanford



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Region 2
i

Region 3

Region 1 .-

MicroBooNE
Data

Localized features at the
pixel-level are useful to
inspect correlation of

data features &
algorithm responses
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Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation
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Machine Learning & Computer Vision in Neutrino Physics
Why neutrinos?

1 AL
e AN

Neutrinos are everywhere!

... which makes them the natural probe to the universe and its history

=10*

> L
10
__E F Cosmological v
10|
" 102 F Solar v
'""E Supernova burst (1987A)
X210
; ot Reactor anti-v
. =10 |
. 1 Background from old supernovae
Early Universe Supernova AGN
10

10 } Terrestrial anti-v
. Atmospheric v

10 ?\

10 ]6: = v from AGN

10 2} \ ™)

7 : o 10 14; Nl Cosmovgenic
~d B 1028
e = = 2 e =

Atmosphere Earth (planets) Accelerators Reactors N o S I B

Neutrino energy

Want to detect & understand more of them
First, understand how neutrinos travel over spacetime (neutrino oscillations)



Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: What’s Important

1 A

e AN
Neutrino Oscillation Measurement

Use a neutrino source (flavour X), measure flavour Y at the detector
What’s important?

Three important detector features for oscillation measurement
P(v, = 1) = sin®20sin’ (
Large M

1.27 Am? L)
Good Ener Parti
Resolutio (scalab Cap

L,
Precise E reduce “More” statistics to measure Better v identification
oscillation uncertainty rare physics process background rejection os




