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1. Neutrino detectors
2. Machine Learning & Computer Vision Applications
3. ML-based Neutrino Data Reconstruction Chain
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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: Early Days

Inverse Beta Decay (IBD)
νe + p → e+ + n

by Reines & Cowan (Nobel Prize 1995)

First neutrino detection

Cd-doped water
0.4 ton, 100 PMTs

(1956)







Need for advanced algorithms 
for analyzing high resolution data with 

complex topologies. 
(goal: maximize physics output)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

νμ

Liquid Argon Time Projection Chamber
• High resolution photograph of charged particle trajectories
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution
~MeV level sensitivity

MicroBooNE
~87 ton (school bus size)
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Topological shape 
difference is a major 
distinction for “shower” 
particles
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Trajectory ends are 
distinct, and useful for 
seeding particle 
clustering and trajectory 
fitting
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Many, local kinks  
caused by Multiple Coulomb 
Scattering process can be 
used for momentum 
estimation
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Small branches on muon-like 
trajectories are knocked-off 
electrons, useful key for the 
direction
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers

Stopping 
particle

e- vs. γ
using dE/dX

Energy deposition 
patterns (dE/dX) 
vary with particle mass 
& momentum, useful 
for analysis 
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers 

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Do you see neutrino interaction here?
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers 

100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Nope :) In this detector, only ~1/700 beam neutrino interacts
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers 

100 cm

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

… and 1/700 have many variations in hi-resolution imaging...

10
0

 c
m
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Machine Learning & Computer Vision in Neutrino Physics
Time Projection Chambers (3D ones)

DUNE-ND: on average ~dozen neutrino interactions per event
Detector: pixelated LArTPC for 3D imaging for high overlaps



Machine Learning and
Computer Vision

18



19

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!

How to write an algorithm to 
identify a cat?

… very hard task ...
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1.  Write an algorithm based on physics principles
Development Workflow for non-ML reconstruction

algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!
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algorithm

collection of 
certain shapesA cat  =

(or, a neutrino)

1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

Partial cat
(escaping the detector) Stretching cat (Nuclear FSI)

Development Workflow for non-ML reconstruction

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!



Development Workflow for non-ML reconstruction
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1.  Write an algorithm based on physics principles
2.  Run on simulation and data samples
3.  Observe failure cases, implement fixes/heuristics
4.  Iterate over 2 & 3 till a satisfactory level is achieved
5.  Chain multiple algorithms as one algorithm, repeat 2, 3, and 4.

“Machine learning”
● Automatization of step 2, 3, and 4.
● Well-defined error propagation (step 5).
● Can optimize the whole chain for physics.

Next: what kind of ML algorithms?

Machine Learning & Computer Vision in Neutrino Physics
You can find a cat? You can find a neutrino!



Machine Learning & Computer Vision in Neutrino Physics
My Research
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High-level
Output

Machine Learning for Data Reconstruction
● Goal: high level abstract information (like image classification)

Input Data

Electron 
Neutrino



Machine Learning & Computer Vision in Neutrino Physics
My Research
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… becomes 
interpretable!

Pixel Feature
Extraction + Points

Input Data

p

pepi

Machine Learning for Data Reconstruction
● Goal: high level abstract information (like image classification)
● How: design the algorithm = data transformation architecture that 

extracts a hierarchy of physically meaningful features (evidences)

Multi-task
Algorithm

High-level
Output

Pixel clustering Kinematics
Inference

Electron 
Neutrino



Machine Learning & Computer Vision in Neutrino Physics
My Research
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Machine Learning for Data Reconstruction
● Goal: high level abstract information (like image classification)
● How: design the algorithm = data transformation architecture that 

extracts a hierarchy of physically meaningful features

Particle ClusteringPixel ClusteringPixel FeatureInput

The Rest: describe the chain



ML-Based LArTPC
Data Reconstruction
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Distinguish 2 distinct particle topologies: showers v.s. tracks
Critical to deploy different algorithms for clustering pixels in the next stage.

PRD 99 092001
arXiv:1808.07269

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269


Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in impementations

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

grey pixels = dolphins, 
blue pixels = water, etc...

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

grey pixels = dolphins, 
blue pixels = water, etc...

Empty pixels = no energy

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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“Applying CNN” is simple, but is it scalable for us?
LArTPC data is generally sparse, but locally dense

CNN applies 
dense matrix 
operations

In photographs, 
all pixels are 
meaningful

Figures/Texts: courtesy of 
Laura Domine @ Stanford

<1% of pixels 
are non-zero in 
LArTPC data

Zero pixels are 
meaningless!

○ Scalability for larger detectors
■ Computation cost increases linearly with the volume
■ But the number of non-zero pixels does not

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Sparse Submanifold Convolutions

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Sparse Submanifold Convolutions

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Our data is locally much more dense 
than ShapeNet 3D dataset

… which makes convolution filter 
more effective on our data as long as 

the sparsity issue is handled

Image credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Sparse U-ResNet fits more data in GPU + good scalability

@batch size 88
sparse uses 
93x less memory
 than dense and 
computation is
3x faster

Can handle easily the 
whole ICARUS detector 
which is x6 larger than 
MicroBooNE.

DUNE-FD is piece of 
cake (larger volume but 
less non-zero pixels)

Figure credit: Laura Domine @ Stanford

ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility



ML-based Neutrino Data Reconstruction Chain
Stage 1-a: Pixel Feature Extraction + Scalablility
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Type Proton Mu/Pi Shower Delta Michel

Acc. 0.99 0.98 0.99 0.97 0.96

Mu/pi
Proton
EM Shower
Delta Rays
MichelPhysRevD.102.012005 presented @ ACAT 2019

● Memory reduction ~ 1/360
● Compute time ~ 1/30
● Handles large future detectors 

Sparse Sub-manifold
Convolutional NN
●  Public LArTPC simulation

○ Particle tracking (Geant4) + diffusion, no 
noise, true  energy 

●  Five type segmentation

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.102.012005&v=f3bb7570
https://indico.cern.ch/event/708041/contributions/3269747/attachments/1812175/2960103/ACAT_2019_Laura_Domine.pdf
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ML-based Neutrino Data Reconstruction Chain
Stage 1-a: input & output

Stage 1-a Input Stage 1-a Output



ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

Point Proposal
Network (PPN)

… extension of U-ResNet 
with 3 CNN blocks

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

PPN1 generates an 
attention mask at the 
lowest resolution

See arxiv:2006.14745

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

PPN2 generates an 
attention mask at the 
intermediate resolution

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

See arxiv:2006.14745

PPN makes the final 
prediction (point type + 
coordinate regression) 

https://arxiv.org/abs/2006.14745


ML-based Neutrino Data Reconstruction Chain
Stage 1-b: Particle Endpoint Prediction

96.8% of predicted points within 3 voxels of a true point
● 68% of true points found within the radius of 0.12 cm 
● Traditional (nominal) reconstruction method finds 90% of predicted points within 

17 voxels, and 68% of true points found within the radius of 0.74cm

See arxiv:2006.14745

https://arxiv.org/abs/2006.14745
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ML-based Neutrino Data Reconstruction Chain
Stage 1: input & output

Stage 1 Input Stage 1 Output



ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering
Simple approach: path-finding between PPN points
● MST to find the “shortest” path between PPN points to cluster pixels
● Works well! BUT it depends on PPN performance directly + not learnable



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Image credit: arXiv 1708.02551

Learnable approach: clustering in the embedding space
● Use CNN to learn a transformation function from the 3D voxels to the embedding 

space where clustering can be performed in a simple manner

https://arxiv.org/pdf/1708.02551.pdf


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

Scalable Particle 
Instance Clustering 
using Embedding

(SPICE)
● Embedding decoder learns 

transformation

● Seediness decoder 
identifies the centroids

● During training, loss is 
conditioned so that the 
points that belong to the 
same cluster follow a 
normal distribution



ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083

https://arxiv.org/abs/2007.03083


ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083

https://arxiv.org/abs/2007.03083


Pixels clustered into trajectory 
fragments using SPICE

ML-based Neutrino Data Reconstruction Chain
Stage 2-a: Dense Pixel Clustering

See arxiv:2007.03083

https://arxiv.org/abs/2007.03083
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ML-based Neutrino Data Reconstruction Chain
Stage 2-a: input & output

Stage 2-a Input Stage 2-a Output



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering
Identifying 1 shower ... which consists of many fragments
● Interpret each fragment as a graph node + edges connect nodes in the same cluster
● Cast the problem to a classification of node (e.g. particle type) and edge (clustering)



ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Input:

● Fragmented EM showers

Node features:
● Centroid, Covariance matrix, PCA
● Start point, direction (PPN)

Input graph:
● Connect every node with every other node 

(complete graph)

Edge features:
● Displacement vector
● Closest points of approach

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Graph-NN for Particle 
Aggregation (GrapPA)
Message passing (MP):

● Meta layer (arxiv:1806.01261)
● Essentially two 3-layer MLPs (BatchNorm 

+ LeakyReLU) for edge feature update and 
node feature update

● 3 times MP (=Edge+Node feature update)

Target:
● Prediction of adjacency matrix 

representing valid edges (=true partition)
● Apply cross-entropy loss

For more studies, see our paper

https://arxiv.org/abs/2007.01335
https://arxiv.org/pdf/1806.01261.pdf
https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Target Label Edge Prediction

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Clustering using GrapPA
● Mean purity and efficiency > 99%
● Sufficient for moving to the next 

stage (particle analysis)

Edge Prediction

https://arxiv.org/abs/2007.01335


ML-based Neutrino Data Reconstruction Chain
Stage 2-b: Sparse Fragment Clustering

See arxiv:2007.01335

Start ID using GrapPA
● Important to identify the “primary 

fragment” (=shower start)
● >99% classification accuracy 

Node prediction

https://arxiv.org/abs/2007.01335
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ML-based Neutrino Data Reconstruction Chain
Stage 2: input & output

Stage 2 Input Stage 2 Output



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Identifying Each Interaction?
This task can be casted to the same task 
already solved using GrapPA! 

● Interaction = a group of particles that 
shared the same origin (i.e. neutrino 
interaction)

● Edge classification to identify an 
interaction

● Node classification for particle type 
ID



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Target Group Predicted Interaction



ML-based Neutrino Data Reconstruction Chain
Stage 3: Interaction Clustering

Predicted Interaction

Promising result to address 
DUNE-ND reconstruction challenge 
(~20 neutrino pile-up)
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ML-based Neutrino Data Reconstruction Chain
Stage 3: input & output

Stage 3 Input Stage 3 Output



… wrapping up …
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ML-based Neutrino Data Reconstruction Chain
Wrapping up...

End-to-End optimizable full chain!
● ~1 week to train the full chain on a single V100 GPU
● Traditional reconstruction chain takes dozens of 

people, months to years long effort 



Machine Learning & Computer Vision in Neutrino Physics
WAKE UP    WAKE UP    WAKE UP

Summary
● Neutrino detector trend: hi-res. particle imaging
● Analysis trend: computer vision algorithms

○ Benefit the hi-resolution image = lots of heuristics (in non-ML)
○ ML-based approach has shown strong promise 

● ML-based data reconstruction approach
○ especially for “busy” detectors … my research :)
○ Working on implementing inductive-bias/causality (“physics”)

● Other active areas: data/sim domain discrepancy adaptation
○ minimize the discrepancy, identify the source, quantify uncertainty
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FIN
Machine Learning for Particle Image Analysis

Questions?



Backup Slides

SPICE
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
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𝜇 𝜇
Occlusion issue

The overlap rate of 
particles is very high 

especially for our signal 
(neutrinos) with an event 

vertex.

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)
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𝜇 𝜇

ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Mask R-CNN … a popular solution, many applications in science/industries

○ Object (=instance) detection + instance pixel masking in a bounding box
○ Issue: instance distinction is affected by BB position/size
○ Another family: Single-Shot-Detection (SSD) based (not covered here)

Cherry-picked case where 
overlap is minimal



ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Three component loss: pull together points that belong to the 

same cluster, keep distance between clusters, and regularization

Equation credit: Dae Hyun K. @ Stanford Image credit: arXiv 1708.02551

https://arxiv.org/pdf/1708.02551.pdf
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ML-based Neutrino Data Reconstruction Chain
Stage 2: Particle & Interaction Clustering

Instance+Semantic Segmentation
● Three component loss: pull together points that belong to the 

same cluster, keep distance between clusters, and regularization

Input: 3D pixel energy depositions Output: 3D pixel clusters
(DBScan in hyperspace)



Backup Slides

Image Classification?
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

NOvA Neutrino
Event Topology

NEXT
Signal vs. Background

MicroBooNE
Signal/Background

e γ μ

LArLIAT
Particle Type Identification
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”
●  Quiet = can assume “almost always neutrino”

○  e.g.) no cosmic-ray background

●  Rare = “only 1 neutrino”
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”
●  Quiet = can assume “almost always neutrino”

○  e.g.) no cosmic-ray background

●  Rare = “only 1 neutrino”
○  the same “image classification architecture” can be applied for…

■ neutrino flavor (topology) classification
■ energy regression (image to one FP32 value)
■ vertex regression (image to three FP32 value)
■ etc. ...
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Machine Learning & Computer Vision in Neutrino Physics
Image Classifications: a lot of applications

Especially great for: “a rare event in a quiet detector”

… but most of LArTPC detectors are not …
●   MicroBooNE, ICARUS, SBND, ProtoDUNE … physics in next 5 years 

○ Busy: typically dozens of cosmic rays in each event
●   DUNE-ND 

○ Not rare (busy): a dozen of neutrino interaction pile-up in each event
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image classification/regression: straight to “flavour & energy”

This is muon neutrino.
Energy is 1 GeV. 
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

… would be nice to know why you thought so ...

… but also challenging: a huge single-step of information reduction

This is electron neutrino.
Energy is 1 eV.  
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image Context Identification
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Why Data Reconstruction

Interaction 
vertex!

Proton,
Proton,
and muon!

So this is likely 
2p1𝜇 with one 
anomaly cluster

Detector noise!
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Backup Slides

Segmentation Data
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection & Semantic Segmentation

Image Context Identification
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Machine Learning & Computer Vision in Neutrino Physics
Hierarchy and Correlation of Context

Image Context Correlation/Hierarchy Analysis
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Machine Learning & Computer Vision in Neutrino Physics
Object Detection for Neutrino ID

MicroBooNE
Simulation + Data Overlay

νμ

JINST 12 P03011 (2017)
arXiv:1611.05531

Neutrino Detection w/ R-CNN
(MicroBooNE LArTPC)

Task: propose a rectangular box that 
contains neutrino interaction
 (location & size) 

https://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/meta
https://arxiv.org/abs/1611.05531
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Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID
Separate electron/positron energy depositions from other types at raw waveform level. 
Helps the downstream clustering algorithms (data/sim comp. @ arxiv:1808.07269)

PRD 99 092001
arXiv:1808.07269

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.092001
https://arxiv.org/abs/1808.07269


Machine Learning & Computer Vision in Neutrino Physics
Semantic Segmentation for Pixel-level Particle ID

Encoder Decoder

Residual
connections

input

conv

conv-s2-finc

tconv-s2-fde

softmax

Concatenation

conv-fdec

Architecture: U-Net + Residual Connections

Image credit: Laura Domine @ Stanford

Number of strided 
convolutions, convolution 
layers, residual connections, 
differ in impementations



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses



Machine Learning & Computer Vision in Neutrino Physics
Fun Playing with Semantic Segmentation

Localized features at the 
pixel-level are useful to 
inspect correlation of 

data features & 
algorithm responses
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Why Neutrino
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Machine Learning & Computer Vision in Neutrino Physics
Why neutrinos?

Neutrinos are everywhere!
… which makes them the natural probe to the universe and its history

Early Universe Supernova AGN Stars

Atmosphere Earth (planets) Accelerators Reactors

Want to detect & understand more of them
First, understand how neutrinos travel over spacetime (neutrino oscillations)
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Machine Learning & Computer Vision in Neutrino Physics
Neutrino Detectors: What’s Important

What’s important?
Three important detector features for oscillation measurement

Large Mass
(scalable)

Good Energy
Resolution

Particle ID
Capability

“More” statistics to measure
rare physics process

Better ν identification
background rejection

Precise Eν reduce
oscillation uncertainty 

e

Neutrino Oscillation Measurement
Use a neutrino source (flavour X), measure flavour Y at the detector


