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Inverse problem in materials science
Conventional theoretical approach

Conventional

1. Construct the Hamiltonian based on phenomenology or first principles
2. Tune the parameters in the Hamiltonian by calculating physical properties of 

interest
3



Inverse problem in materials science
Conventional theoretical approach

Conventional

Hopping terms 𝑡!, 𝑡", 𝑡#…
Interaction terms 𝑈, 𝑉!, 𝑉"…

Temperature 𝑇
Magnetic field 𝐻(𝜔)
Spin-orbit coupling 𝜆

Lattice constant, a 
Filling 𝑁

…

Anisotropy
Site dependence

Layer dependence
Orbital dependence

⊗

Laborious to explore !

Construct a simple model 
based on intuition and feedback

Parameter space

Calculate the physical properties of interest
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Inverse problem in materials science
Inverse approach

Conventional

Inverse

1. Prepare the desired physical properties
2. Construct a Hamiltonian to realize them directly

・It can bypass the laborious explorationBenefits 
5



Inverse problem in materials science
Inverse approach

Conventional

1. Prepare the desired physical properties
2. Construct a Hamiltonian to realize them directly

Inverse

・It can bypass the laborious exploration
・It can reach the qualitatively new principles and materialsBenefits 
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Previous studies to estimate Hamiltonians

・Difficulty in learning because of the cost of collecting data and computation
・The validity of the results is not guaranteed
・Limitations on the models and physical quantities that can be applied

Bayesian 
optimization

Perturbation 
theory

R. Tamura and K. Hukushima, Phys. Rev. B 95 (2017) 164407.
K. Obinata, S. Katakami, Y. Yue, and M. Okada, J. Phys. Soc. Jpn. 88 (2019) 064802.

H. Fujita, Y. O. Nakagawa, S. Sugiura, and M. Oshikawa, 
Phys. Rev. B 95 (2017) 164407.

Machine 
learning

T. Mertz and R. Valenti, Phys. Rev. Research 3 (2021) 013132.

Genetic 
algorithm

G. L. W. Hart et al., Nat. Mater. 4 (2005) 391.
A. Ajoy and P. Cappelaro, Phys. Rev. Lett. 110 (2013) 220503.

Generative 
models

B. Sanchez-Lengeling and A. Aspuru-Guzik, Science 361 (2018) 360. 
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Develop a versatile framework to 
discover Hamiltonians with the desired properties

Research Purpose

Proof of concept of the framework through application to 
anomalous Hall effect and quantum entanglement. 
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Framework



Automatic differentiation (Backpropagation)
Analytical derivatives of (almost) any function can be computed 
by applying the chain rule

While it is used as backpropagation in deep learning,  
it can be applied to versatile applications.

Software libraries

Some studies use over 
a trillion parameters

10

Wikipedia, 
“automatic differentiation” !𝑤 =

𝜕𝑓
𝜕𝑤

W. Fedus et al., J. mach. Learn. Res. 23 (2022) 120. 

(This framework does NOT 
use neural networks)



Many parameters can be optimized 
simultaneously

Possibility to discover 
unprecedented Hamiltonians 

beyond human intuition

Framework

Kohn-Sham eq.

Numerical method

𝐿 𝜽 = −⟨𝑃 𝜽 ⟩Example)

Hartree-FockDiagonalization Band calculation

DMFT …

𝐿 𝜽 =$
𝒌

𝑆"#$%&" 𝒌 − 𝑆 𝒌, 𝜽
'
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Framework
Our framework

Hamiltonian

Numerical 
method

Objective physical 
properties 𝐿 𝜽 = −⟨𝑃 𝜽 ⟩

Parameters 𝜽
ℋ(𝜽)

Example)

Hartree Fock
DMFT
…

Diagonalization
Band calculation
Perturbation

Parametrized

Fixed

Neural networks

Data
Fixed

Parametrized Parameters 𝜽

Neural network
model 

𝐿 𝜽 = !
"
∑# 𝑦$%&'

# 𝜽 − 𝑦()*#
+

Example)Objective 
function 



Result 1
Rediscovery of the Haldane model



: 14 parameters

Set finite temperature to avoid !"!"
!𝜽

becomes 0 

Maximize anomalous Hall conductivity 𝜎)*

Objective function :

Tight binding model on honeycomb lattice Two 
sublattices

𝒌 = 100×100
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Tight binding model on honeycomb lattice
Increasing 𝜎)* automatically changes the Chern numbers to +1 and -1

※ 𝜎*+ < 1 due to 
finite temperature

Two 
sublattices
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Different initial conditions also converge to the same state
→ Our framework automatically rediscover the Haldane model

Tight binding model on honeycomb lattice
Optimized parameters correspond to the center of the 𝐶 = 1 phase 
in the Haldane model

The phase diagram of 
the Haldane model

Two 
sublattices
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Result 2
Discovery of a new Hamiltonian on a triangular lattice



Tight binding model on triangular lattice
Maximize anomalous Hall conductivity 𝜎)*

: 38 parameters

Fixed to half-filling

Four 
sublattices

𝒌 = 100×100
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Tight binding model on triangular lattice
Increasing 𝜎)* automatically changes the Chern numbers to [5,1,-3,-3]

※ 𝜎$% < 6 due to 
finite temperature

The total Chern number has a large value of 6

Four 
sublattices
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Tight binding model on triangular lattice
(approximately) three-fold rotational symmetry appears automatically

Four 
sublattices

Top 
view
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As far as we know, such a Hamiltonian has never been reported.
This proves that our framework can discover new Hamiltonians.

Tight binding model on triangular lattice
Fictitious flux takes regular values

𝑡/ , 𝑡0 = 1
𝜙120 ∈ (0, 𝜋)

Four 
sublattices

fictitious flux
Φ+ = ∑𝜙+

,-
𝜙&'(

𝜙&()

𝜙&)'
𝑎

𝑏 𝑐

Φ( ≅
7𝜋
4

Φ'
⊳ ≅ 0.9𝜋

Φ'
⊲ ≅ 1.6𝜋

𝜙4
12, Φ4
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Result 3
Application to quantum entanglement in many-body systems 



Entanglement entropy (EE)

23

The measure of quantum entanglement in quantum many-body systems. 

Entanglement entropy

𝑆5 = 0 𝑆5 > 0

R Islam et.al., Nature
528, 77 (2015)



Entanglement entropy in various quantum phenomena

24

Quantum 
Phase transition

Topological 
order

Black holesMany-body 
localization

G.Vidal, et.al., PRL.
90, 227902 (2003)

A. Kitaev and J. Preskill,
PRL. 96, 110404 (2006)

D. J. Luitz, et.al., PRB.
91, 081103(R) (2015)

T. Hartman and J. Maldacena, 
JHEP. 91, (R) (2006)

Quantum entanglement appears in various field such as condensed matter 
physics, high-energy physics, and quantum information. 



Designing quantum entanglement 

25

Conventional research has focused on investigating quantum entanglement 
properties of specific quantum systems. 

Conventional

Inverseℋ
Hamiltonian

Meanwhile, considering applications like quantum computation, we need methods to 
design a system with desired quantum entanglement properties by solving inverse 
problems.

Entanglement properties
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Objective function

𝐿 = −𝑆!

Objective:  
Designing Hamiltonians with large entanglement in the ground state

Is it OK to increase EE of the ground state? → No. 
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Objective function

Objective:  
Designing Hamiltonians with large entanglement in the ground state

Is it OK to increase EE of the ground state? → No. 

😥 The optimization becomes unstable when switching the ground states

Optimization process

Ground state

1st Excited state EE of the ground state 
suddenly change
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Objective function

Objective:  
Designing Hamiltonians with large entanglement in the ground state

Is it OK to increase EE of the ground state? → No. 

😥 There are several ways of partitioning into A and B
Group g=1, 
Pattern 𝜉 = 1

Group g=1, 
Pattern 𝜉 = 2

Group g=2, 
Pattern 𝜉 = 1

…



Objective function
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Thermally ensemble EE (TEEE)
Mean of TEEE for partitions

Std of TEEE for partitions
𝑛: index of eigenstate
(𝑔, 𝜉): partitioning pattern
𝐸-: Energy of state 𝑛
𝑆-,.,/: EE at state 𝑛, partitioning (𝑔, 𝜉)
𝛽: inverse temperature

𝜆 > 0

Maximize TEEE Make TEEE uniform for partitions

😁 𝐿 does not change when switching the ground states



Quantum spin systems on a honeycomb lattice

30

Bipartition patterns

18 parameters

K. Inui, and Y. Motome, in preparation
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By increasing the quantum entanglement, the Kitaev model automatically appears

Quantum spin systems on a honeycomb lattice
K. Inui, and Y. Motome, in preparation



Various Lattices

32

K. Inui, and Y. Motome, in preparation

We run calculation with 100 different initial conditions. 
Kitaev model Kitaev model

Inhomogeneous Inhomogeneous 



Maple-leaf lattice
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We found a new Kitaev-like model 
with large quantum entanglement.

𝐿 ≅ −1.708

K. Inui, and Y. Motome, in preparation



Summary and perspective
We have developed and demonstrated a framework to automatically construct 
a Hamiltonian with the desired properties using automatic differentiation. 

We apply this framework to maximizing the Hall conductivity 
1. Rediscovering the Haldane model on honeycomb lattices
2. Discovery of a new Hamiltonian with large Hall coefficient and topologically nontrivial properties on 

a triangular lattice

We apply it to maximizing the entanglement entropy
1. The method is found to generate the Kitaev model on the honeycomb lattice. 
2. It generate a new model with large enganglement on the maple-leaf lattice. 
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https://github.com/koji-inui/automatic-hamiltonian-design
K. Inui, and Y. Motome, Commun. Phys. 6, 37 (2023).

Numerical methods
l Tensor networks
l DMRG
l DFT

Physical properties
l Topological entanglement entropy
l Superconductivity
l Reproduction of experiments

Perspective: the method has a wide range of applicability beyond entanglement 


