MLPhys

Foundation of "Machine Learning Physics"

学習物理学の創成

Grant-in-Aid for Transformative Research Areas (A)

Neural Polytopes

Based on: 1) "Neural polytopes" (ArXiv:2307.00721 [cs.LG]) accepted at ICML2023 workshop poster
2) "Multi-body wave function of ground and low-lying excited states using unornamented deep neural network" (ArXiv:2302.08965) Phys. Rev. Research 5 (2023) 033189

Koji Hashimoto (Kyoto U., phys. dept.) Tomoya Naito (RIKEN iTHEMS) Hisashi Naito (Nagoya U., math dept.)

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]

(1.) Neural Network Quantum States $_{1/4}$ Find ground state wave function $\psi(s_1, s_2, \dots, s_N)$

Q : Minimize its energy E for a given Hamiltonian H,

$$E = \frac{\sum_{s_1, \cdots, s_N, s'_1, \cdots, s'_N} \psi^{\dagger}(s'_1, \cdots, s'_N) \hat{H}_{s'_1, \cdots, s'_N, s_1, \cdots, s_N} \psi(s_1, \cdots, s_N)}{\sum_{s_1, \cdots, s_N} \psi^{\dagger}(s_1, \cdots, s_N) \psi(s_1, \cdots, s_N)}$$

- A : Use ansatz and optimize parameters!
 - Matrix product states

$$\psi(s_1, s_2, \dots) = \operatorname{tr}[A^{(s_1)}A^{(s_2)}\dots]$$

- Tensor network states

$$\psi(s_1, s_2, \dots) = \sum_{m,n} B_{mn} A_{ms_1 s_2} A_{ns_3 s_2}$$

1. Neural Network Quantum States _{2/4} Neural network can be wave functions

- Boltzmann machine states [Carleo, Troyer `17], [Nomura, Darmawan, Yamaji, Imada `17], ..

$$\psi(s_1, \cdots, s_N) = \sum_{h_A} \exp\left[\sum_a a_a s_a + \sum_A b_A h_A + \sum_{a,A} J_{aA} s_a h_A\right]$$

$$\begin{array}{c|c} |h_1\rangle & |h_2\rangle & |h_3\rangle & |h_4\rangle \\ \hline \\ |s_1\rangle & |s_2\rangle & |s_3\rangle & |s_4\rangle \end{array}$$

Ex) 2-d antiferromagnetic Heisenberg model was better-approximated

of hidden units

- Feedfoward network states [Saito `18], ..

$$\psi(s_1, \dots, s_N) = \sum_i f_i \sigma \left(\sum_j W_{ij}s_j + b_i\right)$$

1. Neural Network Quantum States _{3/4} PINN (Physics-informed neural networks)

[Raissi, Perdikaris, Karniadakis `17], ..

Neural Network Quantum States ₄/4 My motivation : continuum ⇔ discrete

So far, most of the work are separated to either "discrete" inputs or "continuous" inputs.

- Discretization effects in DNN approximation of continuous systems is small enough?
- Concepts in continuous systems such as topology will be modified or surviving?
- How the wave function "space" is generated by DNN and machine learning?

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]

2. Solving QM with DNN QM on a lattice, suitable for DNN

<u>Question</u>

For a given Hamiltonian, solve for ground and excited states. 1d or multi-d. 1-particle or many particle. Boson or fermion.

<u>Strategy</u>

- 1) Prepare your QM Hamiltonian on a lattice.
- 2) DNN input : spatial coordinate values (x,y,..) on a latticeDNN output : wave function value f(x,y,..)loss function : Energy expectation value, for the whole lattice
- 3) Train DNN and obtain the ground state wave function.

2. Solving QM with DNN 1d harmonic oscillator on a lattice

<u>Strategy</u> 1) Prepare your QM Hamiltonian on a lattice.

$$H = -\frac{\hbar^2}{2m} \sum_j \Delta_j + \sum_j V^{\text{ext}} (\mathbf{r}_j) + \frac{1}{2} \sum_{j \neq k} V^{\text{int}} (\mathbf{r}_j, \mathbf{r}_k)$$
$$\simeq \tilde{H} = -\frac{1}{2h^2} \tilde{T} + \tilde{V}^{\text{ext}}$$

$$\psi \simeq ilde{\psi} = egin{pmatrix} \psi_1 \ \psi_2 \ \psi_3 \ dots \ \psi_{M-3} \ \psi_{M-2} \ \psi_{M-1} \end{pmatrix} \qquad egin{array}{ll} ilde{ extsf{T}} = egin{pmatrix} -2 & 1 & 0 & \dots & 0 & 0 & 0 \ 1 & -2 & 1 & \dots & 0 & 0 & 0 \ 0 & 1 & -2 & \dots & 0 & 0 & 0 \ 0 & 0 & V_3^{ extsf{ext}} & \dots & 0 & 0 & 0 \ 0 & 0 & V_3^{ extsf{ext}} & \dots & 0 & 0 & 0 \ 0 & 0 & 0 & V_{M-3}^{ extsf{ext}} & \dots & 0 & 0 & 0 \ dots \ 0 & 0 & 0 & \dots & 0 & V_{M-2}^{ extsf{ext}} & 0 & 0 \ 0 & 0 & 0 & \dots & 0 & 0 & V_{M-2}^{ extsf{ext}} & 0 \ 0 & 0 & 0 & \dots & 0 & 0 & V_{M-2}^{ extsf{ext}} & 0 \ 0 & 0 & 0 & \dots & 0 & 0 & V_{M-1}^{ extsf{ext}} \end{pmatrix}
onumber \\ \psi \simeq ilde{\psi} = egin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ dots \\ \psi_{M-3} \\ \psi_{M-2} \\ \psi_{M-1} \end{pmatrix} \qquad V_j^{ extsf{ext}} = V^{ extsf{ext}}(x_j), \ \psi_j = \psi(x_j), \ x_j = -x_{ extsf{max}} + hj, \ h\sqrt{\sum_j ilde{\psi}_j^2} = 1, \quad h = 2x_{ extsf{max}}/M \end{array}$$

2. Solving QM with DNN $1 \rightarrow 1$ DNN is prepared

<u>Strategy</u>

2) DNN input : spatial coordinate values (x,y,..) on a latticeDNN output : wave function value f(x,y,..)loss function : Energy expectation value, for the whole lattice

Activation function: softplus $(x) = \log(1 + e^x)$ 13

2. Solving QM with DNN Successful training with good accuracy

<u>Strategy</u> 3) Train DNN and obtain the ground state wave function.

$$V^{\text{ext}}\left(x\right) = \frac{1}{2}\omega^{2}x^{2}$$

ω	# of Unit		Energy		
	1st Layer	2nd Layer	Kinetic	Potential	Total
1.0	4		+0.250043	+0.250032	+0.500075
1.0	4	4	+0.250006	+0.249996	+0.500002
1.0	4	8	+0.250001	+0.249997	+0.499998
1.0	8		+0.250002	+0.250002	+0.500004
1.0	8	4	+0.250000	+0.249998	+0.499998
1.0	8	8	+0.250004	+0.249996	+0.500001
1.0	8	16	+0.249999	+0.249999	+0.499997
1.0	16		+0.250000	+0.249999	+0.499999
1.0	16	8	+0.250000	+0.249998	+0.499998
1.0	16	16	+0.249999	+0.249998	+0.499997
1.0	32		+0.250000	+0.249999	+0.499998
1.0	32	16	+0.249999	+0.249999	+0.499998
-					

2. Solving QM with DNN

DNN wave function matches

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]

3. Multi-particle / interaction 2 particles, 1d harmonic oscillator

(x,y) : location of the first and second particle

Introduction of interaction $V^{\text{int}}(x,y) = \lambda \exp(-|x-y|)$

Simplicity: Symmetrization (boson) is imposed afterwards!!

3.) Multi-particle / interaction

2 particles, 1d harmonic oscillator

Particles	ω	λ	Energy
Boson	1.0	-1.00	-89.869381
Boson	1.0	-0.25	-19.848949
Boson	1.0	+0.00	+0.999927
Boson	1.0	+0.25	+3.298725
Boson	1.0	+1.00	+3.835173
Boson	5.0	-1.00	-87.554311
Boson	5.0	-0.25	-17.203647
Boson	5.0	+0.00	+4.997829
Boson	5.0	+0.25	+21.149827
Boson	5.0	+1.00	+31.804917
Boson	10.0	-1.00	-84.129658
Boson	10.0	-0.25	$-13\ 118213$
Boson	10.0	+0.00	+9.991009
Boson	10.0	+0.25	+32.287424
Boson	10.0	+1.00	+72.688350
Fermion	1.0	-1.00	-71.409493
Fermion	1.0	-0.25	-11.369632
Fermion	1.0	+0.00	+1.999931
Fermion	1.0	+0.25	+3.298786
Fermion	1.0	+1.00	+3.839178
Fermion	5.0	-1.00	-68.409494
Fermion	5.0	-0.25	-7.207718
Fermion	5.0	+0.00	+9.995902
Fermion	5.0	+0.25	+21.385884
Fermion	5.0	+1.00	+31.804915
Fermion	10.0	-1.00	-63.026667
Fermion	10.0	-0.25	+0.302312
Fermion	10.0	+0.00	+19.975414
Fermion	10.0	+0.25	+38.060907
Fermion	10.0	+1.00	+73.245097

Compare:

For exact sol. at $\lambda = 0$

Boson:
$$E_{gs} = \omega$$

 $\psi_{gs}(x,y) = \sqrt{\frac{\omega}{\pi}} \exp\left[-\frac{\omega (x^2 + y^2)}{2}\right]$

Fermion : $E_{\rm gs} = 2\omega$

$$\psi_{\mathrm{gs}}\left(x,y
ight) = rac{\omega}{\sqrt{\pi}}\left(x-y
ight)\exp\left[-rac{\omega\left(x^{2}+y^{2}
ight)}{2}
ight]$$

3. Multi-particle / interaction

2 particles, 1d harmonic oscillator

3. Multi-particle / interaction

2 particles, 1d harmonic oscillator

3. Multi-particle / interaction 2 particles, 1d harmonic oscillator

Generalization?!

Look inside: Raw wave function before (anti-)symmetrized

3. Multi-particle / interaction 3 particles, 1d harmonic oscillator

Training result : $\omega = 1.0$ $\lambda = 0$

Particles	Energy
Boson	+1.497880
Fermion	+4.486830

Compare: For exact sol. at $\lambda = 0$

Boson:
$$E_{gs} = \frac{3}{2}\omega$$

 $\psi_{gs}(x, y, z) = \left(\frac{\omega}{\pi}\right)^{3/4} \exp\left[-\frac{\omega(x^2 + y^2 + z^2)}{2}\right]$
Fermion: $E_{gs} = \frac{9}{2}\omega$
 $\psi_{gs}(x, y, z) = \left(\frac{\omega}{\pi}\right)^{3/4} \sqrt{\frac{\omega}{6}} \left[(x - y)(1 - 2\omega z^2) + (y - z)(1 - 2\omega z^2) + (z - x)(1 - 2\omega y^2)\right] \exp\left[-\frac{\omega(x^2 + y^2 + z^2)}{2}\right]$

3. Multi-particle / interaction 3 particles, 1d harmonic oscillator

Boson :

Fermion :

3. Multi-particle / interaction Excited states (1 particles, 1d harmonic oscillator)

Training result : $\omega = 1.0$

State	Energy
Oth	+0.499998
$1 \mathrm{st}$	+1.499991
2nd	+2.499986
3 rd	+3.500193
$4 \mathrm{th}$	+4.500201

3. Multi-particle / interaction Excited states (2 particles, 1d harmonic oscillator)

25

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]

 $\psi\left(x
ight)$

$$\begin{split} \psi_{\rm gs}\left(x\right) &= \frac{1}{3.7451} \text{ softplus}\left(a_{\rm gs}\left(x\right)\right), \\ a_{\rm gs}\left(x\right) &= 2.4069a_1\left(x\right) - 1.8344a_2\left(x\right) - 1.9778a_3\left(x\right) + 2.3484a_4\left(x\right) - 4.8998, \\ a_1\left(x\right) &= \text{ softplus}\left(0.35953x + 3.9226\right), \\ a_2\left(x\right) &= \text{ softplus}\left(2.5821x + 0.033213\right), \\ a_3\left(x\right) &= \text{ softplus}\left(-0.65170x + 2.9574\right), \\ a_4\left(x\right) &= \text{ softplus}\left(0.15421x + 2.2016\right), \end{split}$$

Region-wise linear approximation

2-particle 1d harmonic, DNN

DNN with ReLU replacement

Region-wise linear approximation

2-particle 1d harmonic, DNN

DNN with ReLU replacement

DNN 2-8-8-1

DNN 2-4-4-1

4. Discrete geometry High curvature region automatically designed

DNN giving optimal lattice, then?

<u>Benefit</u>

- 1. Computation-easy way to get discrete geometry
- 2. Works even when no smooth surface is given
- 3. Interpolates the smooth and the discrete

<u>Quantum gravity!</u>

- 1. Any space can be embedded as a surface in higher dim
- 2. Loss function can be Einstein equation
- 3. Weight quantization \rightarrow Quantization of space
- 4. No spin network, thus different from AdS/DL

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]

Quantum gravity and discrete surfaces : How can we sum all possible spacetimes?

Regge calculus [Regge `61]

Fixed lattice architecture, variable lengths

Dynamical triangulation [Ambjorn, Loll `98] Randomly generated lattice architecture, fixed lengths

Approximating a sphere by neural network

Cross section defined by $f(x_i) = 1$

[Result 1] Generative polytopes : successful discrete geometry by machine learning

Neural 2-polytopes of type (n; 1) for n = 2, 3, 4, 5, 6, 7.

[Result 1] Generative polytopes : successful discrete geometry by machine learning

Neural 3-polytopes of type (n ; 1) for n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

[Result 1] Generative polytopes : successful discrete geometry by machine learning

Neural 5-polytopes of type (8; 1) sliced at codimension-2 plane rotated gradually.

[Result 2] Neural polytopes : sphere approximation with various activation functions

Neural polygons of type (2; p), with the activation function is chosen as $|x|^p$, where p = 0.8, 1.0, 1.2, 1.5, 2, 3, 5, 10

Neural polyhedra of type (4; p), with the activation function is chosen as $|x|^p$, where p = 0.6, 0.8, 0.9, 1.0, 1.2, 1.5, 2, 3, 5, 10

[Result 2] Neural polytopes : sphere approximation with various activation functions

Neural polygons of type (2; p), with the activation function is chosen as $|x|^p$, where p = 0.8, 1.0, 1.2, 1.5, 2, 3, 5, 10

ML journey from QM to polytopes

Intro: NN quantum states 4 pages (2.) Solving QM with DNN 5 pages ArXiv:2302.08965 [physics.comp-ph] Multi-particle / interaction 9 pages ArXiv:2302.08965 [physics.comp-ph] **Discrete geometry** 5 pages Unpublished (on-going work) Neural polytopes 6 pages ArXiv:2307.00721 [cs.LG]