The real-time dynamics of lattice field theories via machine learning #### Yukari Yamauchi arXiv:2101.05755 with Scott Lawrence 10/28/2021, Deep Learning and Physics Online, Japan #### Contents - QCD, Lattice QCD, and Sign problem - Manifold deformation method - Existence of "perfect manifolds", at least for bosonic theories - Machine learning based algorithms for finding perfect manifolds ### Quantum Chromodynamics #### The theory of quarks and gluons: ${\sf Tom\ McCauley/CMS/CERN}$ $$S_{QCD} = \bar{\psi} \left(i \gamma^{\mu} D_{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$ #### Lattice QCD Non-perturbative method to compute Feynman path integral #### **Discretize** spacetime cutoff $$p < \frac{1}{a}$$ **Links** U take values $g \in SU(3)$ #### Lattice action (Euclidean, gauge part) $$S_{\mathrm{W}} = rac{2}{g_s^2} \sum_{n \in \Lambda} \sum_{\mu < u} \operatorname{Re} \operatorname{Tr}[1 - P_{\mu u}(n)] + O(a^2)$$ Path intergal for expectation values $$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}[U] e^{-S(U)} \mathcal{O}(U)}{\int \mathcal{D}[U] e^{-S(U)}}$$ via Markov chain Monte Carlo sampling ### Sign problems With naive lattice QCD, exponential (in volume) costs to compute Finite μ_B and real-time observables ### Shear viscosity of QCD The shear viscosity η near T_c^1 $$\frac{1}{4\pi} < \frac{\eta}{s} < \frac{2.5}{4\pi}$$ for $T_c < T \le 2T_c$ ¹H. Song, S. A. Bass, U. Heinz, T. Hirano, and C. Shen, Phys. Rev. Lett. 106, 192301 (2011) ### Inputs to hydrodynamics Hydrodynamic fields $\epsilon(\vec{x}), u_{\mu}(\vec{x})$: $$T_{\mu\nu} = T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + \cdots$$ $$T_{\mu\nu}^{(0)} = (\epsilon + P)u_{\mu}u_{\nu} + P g_{\mu\nu}, \quad T_{\mu\nu}^{(1)} = F(\partial_{\mu}\epsilon, \ \partial_{\mu}u_{\nu}; \ \eta, \ \zeta)$$ (P: pressure, η : shear viscosity, ζ : bulk viscosity) Shear viscosity η : • From T_{01} correlator: $$\int_{V} d\vec{x} \ e^{i\vec{k}\cdot\vec{x}} \langle \phi(\beta) | \left[T_{01}(t,\vec{x}), T_{01}(0,0) \right] | \phi(\beta) \rangle \sim e^{-\frac{\eta(\beta)k^{2}}{\epsilon}t}$$ • From T_{12} correlator: $$\eta(\beta) = \frac{1}{T} \int_{V} dx \int_{0}^{\infty} dt \left\langle \phi(\beta) | \left[T_{12}(x,t), T_{12}(0,0) \right] | \phi(\beta) \right\rangle$$ Classical computers → Real-time sign problems Quantum computers → No sign problems, but only small computers exist ### What can classical computers do? Euclidean correlators $^2 ightarrow$ Error bar on η $\mathsf{Minkowski}\ \mathsf{correlators} \to \mathsf{Real\text{-}time}\ \mathsf{sign}\ \mathsf{problem}$ ²H. Meyer, Phys.RevD 76 (2007) 101701 ### Real-time sign problem **Goal:** compute $\langle \phi(\beta) | [\mathcal{O}(t, \vec{x}), \mathcal{O}(0, 0)] | \phi(\beta) \rangle$ Method: Lattice QCD via Markov chain Monte Carlo sampling $$\langle \mathcal{O}(t, \vec{x}) \rangle = \frac{1}{Z} \int \mathcal{D}[\psi, U] e^{-S} \mathcal{O}(t, \vec{x})$$ The action S is complex \rightarrow define "quenched distribution" $e^{-\operatorname{Re} S}$ $$\langle \mathcal{O} \rangle = \frac{\langle e^{-i \operatorname{Im} S} \mathcal{O} \rangle_{e^{-\operatorname{Re} S}}}{\langle e^{-i \operatorname{Im} S} \rangle_{e^{-\operatorname{Re} S}}}$$ Especially the "average sign" is challenging: $$\langle \sigma \rangle = \langle e^{-i\operatorname{Im}S} \rangle_{e^{-\operatorname{Re}S}} \propto a^V, \ |a| \leq 1$$ ### Toward solving some sign problems⁴ - Manifold deformation method³ - ullet Perfect manifolds ($\langle \sigma \rangle = 1)$ in terms of "complex normalizing flows" - Perfect manifolds (and thus complex normalizing flows) exist! - How do we find perfect manifolds or complex normalizing flows? Machine learning? ³For review, see A. Alexandru et al., arXiv:2007.05436 ⁴S. Lawrence and YY, arXiv:2101.05755 #### Manifold deformation One candidate for solving the sign problem is the Manifold Deformation Example: Action $S(x) \rightarrow Path$ integral $\int dx \ e^{-S(x)}$ $$\langle \sigma \rangle_{\mathcal{M}} = \frac{\int_{\mathcal{M}} e^{-S}}{\int_{\mathcal{M}} e^{-\operatorname{Re} S}} \stackrel{?}{>} \frac{\int_{\mathbb{R}} e^{-S}}{\int_{\mathbb{R}} e^{-\operatorname{Re} S}} = \langle \sigma \rangle_{\mathbb{R}}$$ ### 1D example⁵ The action: $$S = x^2 + 2i\alpha x$$ $$\langle \sigma \rangle = e^{-\alpha^2}$$ Change the integration contour to $$z = t - i\alpha$$, $-\infty < t < \infty$ The action on — $$S(z(t)) = -t^2 - \alpha^2$$ The average sign: $$\langle \sigma angle = rac{\int dt \; e^{-\operatorname{Re} S - i \operatorname{Im} S}}{\int dt \; e^{-\operatorname{Re} S}} = 1$$ No sign problem!! ⁵S. Lawrence, Thesis, arXiv:2006.03683 ## Perfect manifold and normalzing flow On a **perfect manifold** $z(t) \subset \mathbb{C}$, The Boltzmann factor in t: $$f(t) = \frac{dz}{dt} e^{-S(z(t))}$$ is real and positive $$\langle \sigma angle = rac{\int dt \; e^{-S}}{\int dt \; e^{-\operatorname{Re} S}} = 1$$ z(t) as a map from $\mathbb R$ to $\mathbb C$: $$dz e^{-S(z)} = dt \frac{dz(t)}{dt} e^{-S(z(t))} = dt \mathcal{N}e^{-t^2/2}$$ (When S is real, called normalizing flow⁶ \mathbb{R} to \mathbb{R}) #### Perfect Manifold exists \leftrightarrow Complex normalizing flow z(t) exists ⁶M. Albergo et al. Phys. Rev. D 100, 034515(2019) K. A. Nicoli, et al. Phys. Rev. E 101, 023304(2020) ### Complex normalizing flow Expectation values: $$\langle \mathcal{O} \rangle_{\mathcal{M}} = \frac{\int_{\mathcal{M}} dz \ e^{-S(z)} \mathcal{O}(z)}{\int_{\mathcal{M}} dz \ e^{-S(z)}} = \frac{\int_{\mathbb{R}} dt \ e^{-t^{2}/2} \ \mathcal{O}(z(t))}{\int_{\mathbb{R}} dt \ e^{-t^{2}/2}}$$ $$\stackrel{?}{=} \frac{\int_{\mathbb{R}} dz \ e^{-S(z)} \mathcal{O}(z)}{\int_{\mathbb{R}} dz \ e^{-S(z)}} = \langle \mathcal{O} \rangle$$ when 3 conditions on \mathcal{M} are met. #### Constraints on manifolds⁷ Manifolds give the correct $\langle \mathcal{O} \rangle$ $$\langle \mathcal{O} \rangle = \frac{\int_{\mathbb{R}} dx \ e^{-S(x)} \mathcal{O}(x)}{\int_{\mathbb{R}} dx \ e^{-S(x)}} = \frac{\int_{\mathcal{M}} dz \ e^{-S(z)} \mathcal{O}(z)}{\int_{\mathcal{M}} dz \ e^{-S(z)}}$$ #### when: - The manifold (—) is a continuous manifold - The manifold (—) is in "asymptotically safe" region - Both e^{-S} and $e^{-S}\mathcal{O}$ are holomorphic functions in the region between (—) and (—) - ightarrow Cauchy's integral theorem! Im x Μ ⁷A. Alexandru et al., Phys. Rev. D. 98, 034506(2018) ### Do perfect manifolds exist? Perfect manifolds exist \leftrightarrow Normalizing flows exist Do perfect manifolds exist? If so, can we find them? If so can use them? There exist perfect manifolds at least for bosonic theories! ### A conjecture on normalizing flows Type of action: action $S(\vec{z})$ which is finite except at $|z|=\infty$ When with NO sign problems (S is real) **Fact**: Normalizing flows exist. $(\mathbb{R}^N \to \mathbb{R}^N)$ #### Conjecture: Normalizin flows are analytic functions of the parameters of the action. **Example**: Scalar field theory $S(z; M, \Lambda) = z_i M_{ij} z_j + g \Lambda_i z_i^4$ on N sites The map: $$\left(\det \frac{d\vec{z}(\vec{t}; M, \Lambda)}{d\vec{t}}\right) e^{-S(z(\vec{t}; M, \Lambda))} = \mathcal{N} \left(e^{-t^2/2}\right)^N$$ Perturbative map in weak g: $$z_i(\vec{t}; M, \Lambda) = z_i - g\left(\sum_j \frac{1}{2} \frac{M_{ij}^{-1}}{M_{ij}^{-1}} \Lambda_j t_j^3 + \frac{3}{4} \frac{M_{ij}^{-1}}{M_{ij}^{-1}} \Lambda_j t_j\right)$$ (analytic in M, Λ except at $\det M = 0$) **Perturbative map** in strong g is analytic in M, Λ except at $\Lambda = 0$ ### Existence of perfect manifolds⁸ #### Conjecture: Normalizing flows are analytic functions of the parameters of the action, when $M, \Lambda \in \mathbb{R}$. #### **Conjecture implies:** Perfect manifolds exist for $M, \Lambda \in \mathbb{C}$ #### Caveat: When manifolds intersect with singularity of S, perfect manifolds are not guaranteed to exist Fermionic theories – ? Can we find them? If so can use them? ⁸S. Lawrence and YY, arXiv:2101.05755 ### Example with scalar field theory⁹ To estimate $\langle \mathcal{O} \rangle_S$ for the action S, let us define $S' = S + \alpha \mathcal{O}$. A perturbing map $\vec{y}(x)$ from $S'(x + \alpha \vec{y}(x))$ to S(x) satisfies $$\nabla \cdot \vec{y}(x) - \vec{y}(x) \cdot \nabla S(x) - \mathcal{O}(x) + \langle \mathcal{O} \rangle_{S} = 0$$ Solve the ODE for $\vec{y}(x)$ and $\langle \mathcal{O} \rangle_S$ via machine learning: $$C(w, \langle \mathcal{O} \rangle_{S}) = \sum_{x} |\nabla \cdot \vec{y}_{w}(x) - \vec{y}_{w}(x) \cdot \nabla S(x) - \mathcal{O}(x) + \langle \mathcal{O} \rangle_{S}|^{2}$$ $$0+1$$ d, $\emph{m}=0.5$, $\emph{N}_{\beta}=1$ 0, $\emph{N}_{T}=0$ $$0+1$$ d, $m=0.5, \lambda=0.5, N_{\beta}=2$ ⁹S. Lawrence and YY, arXiv:2101.05755 ### Ongoing work #### Establish numerical methods to find flows/manifolds #### **Normalizing flows:** $$\left(\det rac{dec{z}(ec{t}; rac{M}{\Lambda})}{dec{t}} ight) \; e^{-S(z(ec{t}; rac{M}{\Lambda}, \Lambda))} = \mathcal{N} \; e^{-ec{t}\cdotec{t}/2}$$ - **1** Represent a normalizing flow with a neural network (parameters \vec{w} . - ② Sample \vec{t} from Gaussian distribution. - The loss function is: $$L(\vec{w}) = \sum_{\vec{t}} |\left(\det \frac{d\vec{z}(\vec{t}; M, \Lambda)}{d\vec{t}}\right) e^{-S(z(\vec{t}; M, \Lambda))} - \mathcal{N} e^{-\vec{t} \cdot \vec{t}/2}|^2$$ Train the neural network with the loss function. #### Thank you!