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Hamburg, Germany;25,26 and the upcoming FAIR facility at GSI
Darmstadt, Germany.27,28 A particularly exciting application is inertial
confinement fusion18–20 where electronic quantum effects are impor-
tant during the initial phase. Aside from dense plasmas, many con-
densed matter systems exhibit WDM behavior – if they are subject to
strong excitation, e.g., by lasers or free electron lasers.29,30

The behavior of all these very diverse systems is characterized by,
among others, electronic quantum effects, moderate to strong
Coulomb correlations, and finite temperature (FT) effects. Quantum
effects of electrons are of relevance at a low temperature and/or if mat-
ter is very highly compressed, such that the temperature is of the order
of (or lower than) the Fermi temperature (for the relevant parameter
range, see Fig. 1 and, for the parameter definitions, see Sec. II).

An important role in the theoretical description of quantum plas-
mas is being played by the quantum kinetic theory.31–38 During the last
25years, improved and generalized quantum kinetic equations have been
derived starting from reduced density operators, e.g., Refs. 39 and 40, or
nonequilibrium Green functions (NEGFs);41–44 for text books, see Refs.
40 and 45–47 and references therein. Another direction in quantum
plasma theory is first principles computer simulations such as quantum
Monte Carlo (QMC),4,48–55 semiclassical molecular dynamics (SC-MD)
with quantum potentials, e.g., Ref. 56, electronic force fields,57,58 and vari-
ous variants of quantumMD, e.g., Refs. 59–63.

A recent breakthrough occurred with the application of
Kohn–Sham density functional theory (DFT) simulations because
they, for the first time, enabled the self-consistent simulation of realis-
tic warm dense matter that includes both plasma and condensed mat-
ter phases, e.g., Refs. 64–66. Further developments include orbital-free

DFT (OF-DFT) methods, e.g., Refs. 67 and 68, and time-dependent
DFT (TD-DFT), e.g., Ref. 69. In DFT simulations, however, a bottle-
neck is the exchange–correlation (XC) functional for which a variety
of options exist, the accuracy of which is often poorly known, what
limits the predictive power of the method. This requires tests against
independent methods such as quantum Monte Carlo simulations for
the electron component4 or against electron-ion quantum Monte
Carlo.70–72 Also, the use of finite-temperature functionals was shown
to be important73,74 when the XC-contribution is comparable to the
thermal energy, see Ref. 75 for a topical discussion and Ref. 76 for an
extensive investigation of hydrogen. One goal of this paper is to pre-
sent an overview of these results and discuss future research
directions.

Motivated by time-resolved experiments, e.g., Ref. 77, the theo-
retical description of the nonequilibrium dynamics of warm dense
matter is attracting increasing interest, e.g., Ref. 78. Time-dependent
x-ray Thomson scattering was modeled in Refs. 79 and 80. Here, the
powerful methods are quantum kinetic equations81,82 and nonequilib-
rium Green functions, e.g., Refs. 83 and 84.

All of the above-mentioned simulation approaches are complex
and require substantial amounts of computer time. At the same time,
the above-mentioned simulations are currently only feasible for small
length scales and simulation durations. Therefore, simplified models
that would allow to reach larger length and time scales are highly
desirable. Possible candidates are fluid models for quantum plasmas
that are obtained via a suitable coarse graining procedure, as in the
case of classical plasmas. Quantum hydrodynamics (QHD) models for
dense plasmas have experienced high activity since the work of
Manfredi and Haas.85,86 However, their version of QHD involved sev-
eral assumptions, the validity of which remained open for a long time.
Corrections of the coefficients in the QHD equations were recently
obtained in Refs. 87 and 88, and a systematic derivation of the QHD
equations from the time-dependent Kohn-Sham equations is given in
Ref. 89. We also mention a recent alternative approach that is based
on the computation of semiclassical Bohm trajectories.90

The goal of this paper is to present a summary of some of the
recent ab initio simulations of the electron gas under warm dense mat-
ter conditions, including thermodynamic functions and local field cor-
rections developments. Furthermore, we summarize recent progress in
the field of QHD for quantum plasmas. In addition to an overview of
recent developments, we present new results for (a) the application
of the finite-temperature exchange correlation free energy in DFT sim-
ulations of dense hydrogen and carbon (Sec. IV); (b) for the dynamic
density response function, vðx; qÞ (Sec. IIIC); (c) for the screened
potential of an ion in a correlated plasma, based on the ab initioQMC
input for the local field correction (Sec. VF); and (d) on the dispersion
of ion-acoustic modes in a correlated quantum plasma (Sec. VG).

This paper is organized as follows: in Sec. II, we recall the main
parameters of warm dense matter and the relevant temperature and
density range. Section III presents an overview on recent quantum
Monte Carlo simulations followed by finite-temperature DFT results
in Sec. IV. WDM out of equilibrium and its treatment via a QHD
model is discussed in Sec. V.

II. WARM DENSE MATTER PARAMETERS
Let us recall the basic parameters of warm dense matter:40,89 the

first are the electron degeneracy parameters h ¼ kBT=EF and

FIG. 1. Density-temperature plane with examples of plasmas and characteristic
plasma parameters. ICF denotes inertial confinement fusion. Metals (semicon-
ductors) refer to the electron gas in metals (electron–hole plasma in semicon-
ductors). Weak electronic coupling is found outside the line Ceff ¼ 0:1, cf.
Eq. (4). Electronic (ionic) quantum effects are observed to the right of the line
v ¼ 1 (vp ¼ 1). The coupling strength of quantum electrons increases with rs
(with decreasing density). Atomic ionization due to thermal effects (due to pres-
sure ionization) is dominant above (to the right of) the red line, aion ¼ 0:5, for
the case of an equilibrium hydrogen plasma.91 The values of vp and rs refer to
the case of hydrogen. Figure modified from Ref. 89.
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Limitation of current approaches

evolution of the walkers, as derived from Eq. (23), can be
found elsewhere.45,67 The form of q̂ is known exactly at infi-
nite temperature (b¼ 0, q̂ ¼ 1̂), providing an initial condi-
tion for Eq. (22). For the electron gas, however, it turns out
that simulating a differential equation that evolves a mean-
field density matrix at inverse temperature b to the exact
density matrix at inverse temperature b is much more effi-
cient than solving Eq. (22), an insight that leads to the
“interaction picture” version of DMQMC39,46 used through-
out this work.

The sign problem manifests itself in DMQMC as an
exponential growth in the number of walkers required for the
sampled density matrix to emerge from the statistical
noise.67–70 Working in a discrete Hilbert space helps to reduce
the noise by ensuring a more efficient cancellation of positive
and negative contributions, enabling larger systems and lower
temperatures to be treated than would otherwise be possible.
Nevertheless, at some point, the walker numbers required
become overwhelming and approximations are needed.
Recently, we have applied the initiator approximation71–73 to
DMQMC (i"DMQMC). In principle, at least, this allows a
systematic approach to the exact result with an increasing
walker number. More details on the use of the initiator
approximation in DMQMC and its limitations can be found in
Ref. 39.

F. Applicability of the QMC methods

To conclude the discussion of Quantum Monte Carlo, in
Fig. 2, we give a schematic overview of the parameter com-
binations where the different methods can be used to obtain
results in the thermodynamic limit (for a discussion of finite-
size corrections, see Sec. V) with a relative accuracy of
DV=V # 0:003. Standard PIMC (black) is only useful for
high temperatures and low densities where fermionic
exchange does not play an important role and, therefore,
does not give access to the WDM regime. PB-PIMC (green)
significantly extends the possible parameter combinations to

lower temperature (down to h ¼ 0:5 for rs $ 1) and is avail-
able over the entire density range for h ! 2. In contrast, both
CPIMC (red) and DMQMC (blue) are feasible for all h at
small rs and eventually break down with increasing rs due to
coupling effects. Despite their apparent similar range of
applicability, it turns out that CPIMC is significantly more
efficient at higher temperature, while DMQMC is superior at
low h.

IV. SIMULATION RESULTS FOR THE FINITE SYSTEM

The first step towards obtaining QMC results for the
warm dense electron gas in the thermodynamic limit is to
carry out accurate simulations of a finite model system. In
Fig. 3, we compare results for the density dependence of the
exchange correlation energy Exc of the UEG for N¼ 33 spin-
polarized electrons and two different temperatures. The first
results, shown as blue squares, were obtained with RPIMC31

for rs $ 1. Subsequently, Groth, Dornheim, and co-work-
ers44,51 showed that the combination of PB-PIMC (red
crosses) and CPIMC (red circles) allows for an accurate
description of this system for h $ 0:5. In addition, it was
revealed that RPIMC is afflicted with a systematic nodal error
for densities greater than the relatively low value at which
rs¼ 6. Nevertheless, the FSP precludes the use of PB-PIMC
at lower temperatures and, even at h ¼ 0:5 and rs¼ 2, the sta-
tistical uncertainty becomes large. The range of applicability
of DMQMC is similar to that of CPIMC, and the DMQMC
results (green diamonds) fully confirm the CPIMC results.39,46

Further, the introduction of the initiator approximation (i-
DMQMC) has made it possible to obtain results up to rs¼ 2
for h ¼ 0:5. Although i-DMQMC is, in principle, systemati-
cally improvable and controlled, the results suggest that the
initiator approximation may introduce a small systematic shift
at lower densities.

In summary, the recent progress in fermionic QMC
methods has resulted in a consensus regarding the finite-N
UEG for temperatures h $ 0:5. However, there remains a
gap at rs % 2" 6 and h < 0:5 where, at the moment, no reli-
able data are available.

FIG. 2. Density-temperature-plane around the WDM regime. Shown are the
parameter combinations where standard PIMC (black), PB-PIMC (green),
CPIMC (red), and DMQMC (blue) can be used to obtain data in the thermo-
dynamic limit with an accuracy of DV=V # 0:003.

FIG. 3. Exchange-correlation energy of N¼ 33 spin-polarized electrons as a
function of the density parameter rs for two isotherms. Shown are results
from CPIMC and PB-PIMC taken from Ref. 51, restricted PIMC from Ref.
31, and DMQMC from Ref. 39. For h ¼ 0:5, all data have been shifted by
0.05 Hartree. In the case of DMQMC, the initiator approximation is used.
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variational probability distribution

Variational free-energy ℒ = 𝔼
x∼p(x)

[ln p(x) + βH(x)] ≥ − ln Z

…

Turn the sampling  problem to an optimization problem. 
Not necessarily easy. But may better leverage deep learning engine.
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variational probability distribution

Variational free-energy ℒ = 𝔼
x∼p(x)

[ln p(x) + βH(x)]

Factorized probability 
Pairwise interaction

normalizing flow Li, LW,  PRL ‘18 
Deep generative models
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…

“mean-field” approaches

autoregressive model, Wu, LW, Zhang,   PRL ‘19

Turn the sampling  problem to an optimization problem. 
Not necessarily easy. But may better leverage deep learning engine.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`
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For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.
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G 0
21~ ivn!5ivn1m2t2G~ ivn!. (23)

The same density of states is also realized for a random
Hubbard model on a fully connected lattice (all N sites
pairwise connected) where the hoppings are indepen-
dent random variables with variance t ij

2 5t2/N (see
Sec. VII).

Finally, the Lorentzian density of states

D~e!5
t

p~e21t2!
(24)

can be realized with a t ij matrix involving long-range
hopping (Georges, Kotliar, and Si, 1992). One possibility
is to take ek=t/d( i51

d tan(ki)sgn(ki) for the Fourier
transform of t ij on a d-dimensional lattice, with either
d=1 or d=`. Because of the power-law tails of the den-
sity of states, this model needs a regularization to be
properly defined. If one introduces a cutoff in the tails,
which is like the bottom of a Fermi sea, then a 1/d ex-
pansion becomes well defined. Some quantities like the
total energy are infinite if one removes the cutoff. Other
low-energy quantities, like the difference between the
energy at finite temperatures and at zero temperature,
the specific heat, and the magnetic susceptibility have a
finite limit when the cutoff is removed. The Hilbert
transform of (24) reads D̃(z)=1/$z+it sgn[Im(z)]%. Using
this in (7), one sees that a drastic simplification arises in
this model: the Weiss function no longer depends on
G , and reads explicitly

G 0~ ivn!215ivn1m1it sgnvn . (25)

Hence the mean-field equations are no longer coupled,
and the problem reduces to solving Seff with (25). It
turns out that (25) is precisely the form for which Seff
becomes solvable by Bethe ansatz, and thus many prop-
erties of this d!` lattice model with long-range hop-
ping and a Lorentzian density of states can be solved for
analytically (Georges, Kotliar, and Si, 1992). Some of its
physical properties are nongeneric however (such as the
absence of a Mott transition).

Other lattices can be considered, such as the d=` gen-
eralization of the two-dimensional honeycomb and
three-dimensional diamond lattices considered by San-
toro et al. (1993), and are briefly reviewed in Appendix
A. This lattice is bipartite but has no perfect nesting.

III. DERIVATIONS OF THE DYNAMICAL MEAN-FIELD
EQUATIONS

In this section, we provide several derivations of the
mean-field equations introduced above. In most in-
stances, the simplest way to guess the correct equations
for a given model with on-site interactions is to postulate
that the self-energy can be computed from a single-site
effective action involving (i) the original interactions
and (ii) an arbitrary retarded quadratic term. The self-
consistency equation is then obtained by writing that the
interacting Green’s function of this single-site action co-
incides with the site-diagonal Green’s function of the lat-
tice model, with identical self-energies. The derivations

presented below prove the validity of this construction
in the limit of large dimensions.

A. The cavity method

The first derivation that we shall present is borrowed
from classical statistical mechanics, where it is known
under the name of ‘‘cavity method.’’ It is not the first
one that has historically been used in the present con-
text, but it is both simply and easily generalized to sev-
eral models. The underlying idea is to focus on a given
site of the lattice, say i=0, and to explicitly integrate out
the degrees of freedom on all other lattice sites in order
to define an effective dynamics for the selected site.

Let us first illustrate this on the Ising model. The ef-
fective Hamiltonian Heff for site o is defined from the
partial trace over all other spins:

(
Si ,ifio

e2bH[e2bHeff@So#. (26)

The Hamiltonian H in Eq. (1) can be split into three
terms: H52hoSo2( iJ ioSoSi1H(o). H(o) is the Ising
Hamiltonian for the lattice in which site o has been re-
moved together with all the bonds connecting o to other
sites, i.e., a ‘‘cavity’’ surrounding o has been created
(Fig. 1). The first term acts at site o only, while the sec-
ond term connects o to other sites. In this term,
JioSo[h i plays the role of a field acting on site i . Hence
summing over the Si’s produces the generating func-
tional of the connected correlation functions of the cav-
ity Hamiltonian H(o) and a formal expression for Heff
can be obtained as

Heff5const1 (
n51

`

(
i1•••in

1
n!

h i1
•••h in

^Si1
•••Sin

&c
~o ! (27)

For a ferromagnetic system, with Jij>0 scaled as 1/d ui2ju

(ui2ju is the Manhattan distance between i and j), only
the first (n=1) term survives in this expression in the
d!` limit. Hence Heff reduces to Heff=−heffSo , where
the effective field reads

heff5h1(
i

Joi^Si&~o !. (28)

^Si&
(o) is the magnetization at site i once site o has been

removed. The limit of large coordination brings in a fur-

FIG. 1. Cavity created in the full lattice by removing a single
site and its adjacent bonds.

21A. Georges et al.: Dynamical mean-field theory of . . .
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Intuition

If the mapping f is 1-to-1, then the total area (or volume) should

not change after the transformation from x to z .

Figure 1: Mapping from one probability density to another. Source:

Lecture 19 notes
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Normalizing flow in a nutshell

𝒩(z)

p(x)

latent space 

physical  
space 

“neural net”  
with 1 neuron



Normalizing Flows

p(x) = 𝒩(z) det ( ∂z
∂x )

Change of variables x ↔ z with deep neural nets  

composable, differentiable, and invertible mapping between manifolds
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z ∼ 𝒩(z)x

Learn probability transformations with normalizing flows

Review article  
1912.02762 
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H = ∑
i<j

1
|xi − xj |

+
N

∑
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Classical Coulomb gas in a parabolic trap

N = 6



Lattice field theoryMolecular simulation

Although no reference for this free-energy dif-
ference in the given simulationmodel is known,
the temperature profile admits basic consistency
checks: The x-ray structure is identified as the
most stable structure at temperatures below
330 K. The internal energy and entropy terms of
the free-energy difference (Eq. 1) are both positive
across all temperatures. Therefore, the free-energy
decreases at high temperatures as the entropic

stabilization becomes stronger. A higher configu-
rational entropy of the “O” state is consistent with
its more open loop structure (compare Fig. 5, G
and H) and the higher degree of fluctuations in
the “O” state observed by the analysis in (30).

Discussion and conclusion

Boltzmann generators can overcome rare event-
sampling problems in many-body systems by

generating independent samples from different
metastable states in one shot. We have demon-
strated this for dense and unstructured many-
body systems with up to 892 atoms (over 2600
dimensions) that are placed simultaneously, with
most samples having globally and locally valid
structures and potential energies in the range of
the equilibrium distribution. In contrast to other
generative neural networks, Boltzmann generators

Noé et al., Science 365, eaaw1147 (2019) 6 September 2019 7 of 11

Fig. 5. One-shot sampling of all-atom structures in different
conformations of the BPTI protein. (A) Boltzmann generator for
macromolecules: Backbone atoms are whitened using PCA; side-chain
atoms are described in normalized internal coordinates (crds). (B) BPTI
x-ray crystal structure (PDB: 5PTI). Cysteine disulfide bridges and
aromatic residues are shown for orientation. (C) One-shot Boltzmann
generator sample of all 892 atoms (2670 dimensions) of the BPTI
protein similar to the x-ray structure. (D) Potential energy distribution
from MD simulation (gray) and Boltzmann generator one-shot samples

(blue). (E) Distribution of bonds and angles compared between
MD simulation (black) and Boltzmann generator (blue).
(F) Representative snapshots of four clusters of structures
generated with the Boltzmann generator. Backbone root mean
square deviation from the x-ray structure is given below the
structure (in angstroms). Marked are the x-ray–like structure
“X” and the open structure “O.” (G and H) Magnification of the
most variable parts of the Boltzmann-generated samples from the
“X” and “O” states. Side chains are shown in atomistic resolution.
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Two training approaches
Density estimation

ℒ = − 𝔼x∼dataset [ln p(x)]

x ∼ dataset z
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Samples from the given dataset 

“learn from data”

Variational calculation

ℒ = ∫ dx p(x)[ln p(x) + βH(x)]

z ∼ 𝒩(0, Σ)x
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Generate samples from the model

“learn from Hamiltonian”



Density estimation

ℒ = − 𝔼x∼dataset [ln p(x)]
“learn from data”

𝕂𝕃(π | |p) = ∑
x

π ln π −∑
x

π ln p

ℒ

Variational calculation

ℒ = ∫ dx p(x)[ln p(x) + βH(x)]
“learn from Hamiltonian”

ℒ + ln Z = 𝕂𝕃 (p | |
e−βH

Z ) ≥ 0

Two training approaches



Now, march into 
the quantum 

world



Quantum relative entropy

S (ρ | |σ)

Density matrix ρ

Variational free-energy

Probability distribution p

Classical world  Quantum  world

Kullback-Leibler divergence

𝕂𝕃 (p | |q)

ℒ = Tr(ρ ln ρ) + βTr(Hρ)ℒ = ∫ dx p(x)[ln p(x) + βH(x)]
Variational free-energy



Density matrix
Quantum stateClassical probability 

Ψ(x) = ⟨x |Ψ⟩

ρ = ∑
n

μn |Ψn⟩⟨Ψn |

0 < μn < 1

∑
n

μn = 1 ∫ dx |Ψ(x) |2 = 1

How to represent variational density matrix so it is physical & optimizable ? 

Trρ = 1 ρ ≻ 0 ρ† = ρ ⟨x |ρ |x′ ⟩ = (−1)𝒫⟨𝒫x |ρ |x′ ⟩



Normalizing  
Flow

Gaussian variables Correlated variables 

p(x)𝒩(z)

Idea: to parametrize a density,  
think about the transformation

ℒ = ∫ dx p(x)[ln p(x) + βH(x)]

Imposing constraints to the transformation for physical densities



We need unitary transformations

ℒ = Tr(ρ ln ρ) + βTr(Hρ)

Unitary 
Transformation

ρ0 ρ = Uρ0U†

How to parametrize and learn unitary transformations ? 

Trρ = 1 ρ ≻ 0 ρ† = ρ
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Point Transformations in Quantum Mechanics
BRYCE SKLIGMAN DEWITT

Ecole d'Etd de Physique Theorigue de L'University de Grenoble, res Homches, Halte Savoie, France
(Received September 14, 1951)

An isomorphism is shown to exist between the group of point transformations in classical mechanics and
a certain subgroup of the group of all unitary transformations in quantum mechanics. This isomorphism is
used to indicate that the quantum analogs of physically signi6cant classical expressions can be constructed
uniquely in any coordinate system. There is no ambiguity in the ordering of noncommuting quantum
operators, and the method of constructing the quantum analogs is covariant under general coordinate
transformations. The method is actually only applicable to systems having Lagrangians which are at most
quadratic in the velocities, but this includes all systems which are presently of interest in physics. The
method is applied to two intrinsically nonlinear examples, one of which is the gravitational field, The correct
Hamiltonian operator for a quantized version of Einstein's gravitational theory is constructed.

&. INTRODUCTION

"/RESENT day methods of formulating quantum
mechanics are based more or less completely on

analogy with classical mechanics. There are certain
well-known rules for passing from the classical theory
to the quantum theory. One replaces ordinary numbers
by operators and Poisson brackets by commutator
brackets. In principle, however, an ambiguity always
presents itself when one is faced with the task of con-
structing the quantum analog of a classica]. expression
which involves the product of two factors whose poisson
bracket does not vanish. One does not know, o priori,
how the corresponding quantum factors should be
ordel ed.
Fortunately, the systems occurring in nature are for

the most part simple enough in their mathematical
description so that one has no trouble in deciding what
the correct order should be. Nevertheless the aforemen-
tioned ambiguity represents a real deficiency in the
present theory, because (1) the simplicity of natural
systems is only apparent and is due to the fact that for
such systems there usua11y exist what may be called
"natural" coordinates in which the dynamical equations
take particularly simple forms, and (2) the trans-
formation theory of dynamics, which plays such an
important role in the quantum theory, owes its validity
to the invariance of classical Hamiltonian systems under
a much wider group of transformations than one has
heretofore been able to incorporate sensibly into the
quantum scheme, owing to said ambiguity.
It is known that a true correspondence between the

classical and quantum theories exists with respect to a
certain subgroup of the group of all canonical trans-
formations, namely the subgroup of all linear inhomo-
geneous canonical transformations. If one restricts
oneself to this subgroup, then an isomorphism can be
set up between classical quantities and their quantum
analogs, when these quantities are at most quadratic
in the canonical variables. A similar isomorphism does
not exist, however, for other classical quantities, even

*Now a Fulbright grantee at the Tata Institute of Fundamental
Research, Bombay, India.

undcx' this I'cstllctcd subgI'oup. Thc qucstloIl thclcfolc
arises: Is it possible, for a given dynamical system, to
choose the canonical variables in such a way that the
important physical quantities, energy, momentum, etc.,
become quadratic in these variables' Unfortunately,
the answer to this question is no in many cases of im-
portance, e.g., interacting 6clds.
Even in the case of interacting systems, however, no

ambiguity in formulating the quantum theory has
arisen in practice, because one has always supposed that
a clear distinction could bc made between the various
systems in interaction, and. one has usually imagined
that it makes sense to talk about "free systems" and to
treat the interactions as perturbations. For the "free
systems" the answer to the above question is in the
afhrmative and a set of "natural" dynamical variables
does exist. But, as we have already remarked, the
existence of "natural" variables is more apparent than
real, and may be more a reflection of the way our minds
work than of the way nature works.
MoI'c pertinent to the plcscnt dlscusslon ls thc fRct

that the linear inhomogeneous subgroup of canonical
transformations is never used, as such, in practice.
Indeed, the restriction to this subgroup is highly arti-
hcial. A type of canonical transformation which has
much more physical content and which is much more
frequently used in solving actual problems is a general
transformation of the coordinate variables, i.e., a
so-called point transformation.
In using point transformations in quantum theory,

one usually 6rst "quantizes" a given system in a set of
"natural" coordinates (e.g., rectilinear coordinates) and
then carries out the coordinate changes afterwards.
However, if we adopt seriously the philosophy of
general relativity, then we should say that one coor-
dinate system is as good as another, and we need not
hRvc felt obllgcd to carry out thc .quantlzRtlon ln R
"natural" coordinate system. Our rules of quantization,
as mell as our quantum-mechanical equations, should bc
' For a full discussion of this point, see L Van Hove, "Sur le

problkme des Relations entre les Transformations Unitaires de la
Mbcanique Quantique et les Transformations Canoniques de la
Mhcanique Classique. " (To be published. )

p''= 2[ax'/»", p 1+ (3 3)

That Eq. (3.3) gives the correct quantum trans-
formation law for the momentum operators may be
shown by making explicit use of expressions (2.24). We
hRve

t9$~ | 8X2
p4 pl+ pf)

8$ 2 Bx

where

formulating the quantum analog of Eq. (3.2). For the
only problem here is that of correctly symmetrizing the
right-hand side of (3.2) so as to make it Hermitian. One
may easily convince oneself that all methods of sym-
metrization lead to the same result, namely, '

5=-', [X'(x), p,],. (3.10)
S is the generator of the infinitesimal point trans-
formation.
The subgroup of unitary transformations in quantum

mechanics which corresponds isomorphically to the
group of all. point transformations in classical mechanics
is given by the set of all unitary operators exp(r5/iA),
where 5 has the form (3.10) and where v is an arbitrary
parameter. Each set of functions A' de6nes a one-
parameter subgroup of the point-transformation group.

4. DYNAMICAL SYSTEMS IN GENERAL COORDINATES

In this section we shall consider the set of all dy-
namical systems which, in the classical theory, have a
Lagrangian function of the form

+
8$ kg Bx~ Bx

(3.5) I= G2,,x-'x'+A, &' V,— (4.1)

which shows that the i:nverse transformation has the
same form as (3.3).
The unitary representations of the point-transforma-

tion group may be obtained by determining the
infinitesimal generators of the group. An in6nitesimal
point transformation may be expressed in the form

x"=*+~~'(x) (3.7)
P''=P.—l~[(a/ax")~'(x), P~]+, (3 g)

where ~ is an infinitesimal constant and A' is a function
of the x's. More generally, every function f of the x's
and p's transforms under (3.7, 8) according to

f'=f+(e/+) Lf, 5] (3 9)

For example, one might expand Bx&'/Bx" in a power series in
the x's. The operator p could then be inserted between the x's
in any symmetrical fashion in each term of the series, The result
of commuting p symmetrica11y to the left and to the right through
the x's is to produce two terms of order 5 which cancel each
other, leaving simply the expression (3.3).

Equation (3.5) is, however, just the usual transforma-
tion law for the contracted Christoffel symbol. Ex-
pressions (2.24) are therefore covariant under point
transformations,
That there exists an isomorphism between the group

of poillt tlRnsfoI'nlatlons ln clRsslcal mechanics Rnd R

corresponding subgroup of the group of all unitary
transformations in quantum mechanics is thus quite
evident. The group property ensures that each point
transformation has an inverse. It is instructive to display
explicitly the inverse of Eq. (3.3).We write
—2[ax'&'/ax', p ]+
=l[a '/a*' [a*"/a*",p],]+
=—,'[[ax'&/»', ax'/ax'&]+, p„]~

+,'[ ax" /ax-&', [pI, ax'&'/ax']]

=-,'[a,j', pI,]+,'~A[ax'/ax", a'x'&/»"ax']= p, , (3.6)

where 6,;, A;, and V are functions of the x's and where
the matrix IIG,,II is symmetric and nonsingular. We
assert that this set includes all systems in nature which
satisfy Bose-Einstein statlstlcs, i.c.

&
for which Poisson

brackets, involving coordinates and momenta singly as
well as multiply, correspond to commutator brackets in
the quantum theory. The case of I'ermi-Dirac systems
will be discussed brieQy in Sec. 7.
There exist, to be sure, Bose-Einstein systems which

have Lagrangians of the form (4.1) but for which the
matrix IIG;, II is singular. The singularity of the matrix,
however, simply implies that the momenta are not all
independent, and the lagrangian for such a system can
always be replaced by a Lagrangian for which IIG
nonsingular, together with a set of supplementary con-
ditions expressing the relations between the momenta.
The existence of such supplementary conditions does
not alter the discussion which follows.
Under general coordinate transformations the quan-

tities V, A;, and G;, transform like a scalar, a covariant
vector, and a covariant tensor respectively. V and A;
have respectively the nature of a scalar and a vector
potential. 6;; can likewise be regarded as a tensor
potential. However, it is a true potential only if it
cannot be "transformed away, " i.e., if there exists no
coordinate system in which it is everywhere constant.
We shall tentatively identify 6;;with the metric tensor
of the manifold of the x's—or rather with some con-
stRnt nlultlplc of lt

~v=~Cv (4.2)
We shall subsequently discuss in fuller detail the
reasons for this identification.
The Hamiltonian function corresponding to the

Lagrangian (4.1) has the form
&=(1/2I )g""(O' A')(P~ A;)+V — (4—3)

where g'~' is the contravariant inverse of the metric
tensor and the momenta are given by

(4 4)

Unitary representation of coordinate transformation p''= 2[ax'/»", p 1+ (3 3)
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is given by the set of all unitary operators exp(r5/iA),
where 5 has the form (3.10) and where v is an arbitrary
parameter. Each set of functions A' de6nes a one-
parameter subgroup of the point-transformation group.
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Lagrangian function of the form
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same form as (3.3).
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tion group may be obtained by determining the
infinitesimal generators of the group. An in6nitesimal
point transformation may be expressed in the form

x"=*+~~'(x) (3.7)
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where ~ is an infinitesimal constant and A' is a function
of the x's. More generally, every function f of the x's
and p's transforms under (3.7, 8) according to
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For example, one might expand Bx&'/Bx" in a power series in
the x's. The operator p could then be inserted between the x's
in any symmetrical fashion in each term of the series, The result
of commuting p symmetrica11y to the left and to the right through
the x's is to produce two terms of order 5 which cancel each
other, leaving simply the expression (3.3).

Equation (3.5) is, however, just the usual transforma-
tion law for the contracted Christoffel symbol. Ex-
pressions (2.24) are therefore covariant under point
transformations,
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corresponding subgroup of the group of all unitary
transformations in quantum mechanics is thus quite
evident. The group property ensures that each point
transformation has an inverse. It is instructive to display
explicitly the inverse of Eq. (3.3).We write
—2[ax'&'/ax', p ]+
=l[a '/a*' [a*"/a*",p],]+
=—,'[[ax'&/»', ax'/ax'&]+, p„]~

+,'[ ax" /ax-&', [pI, ax'&'/ax']]
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where 6,;, A;, and V are functions of the x's and where
the matrix IIG,,II is symmetric and nonsingular. We
assert that this set includes all systems in nature which
satisfy Bose-Einstein statlstlcs, i.c.
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brackets, involving coordinates and momenta singly as
well as multiply, correspond to commutator brackets in
the quantum theory. The case of I'ermi-Dirac systems
will be discussed brieQy in Sec. 7.
There exist, to be sure, Bose-Einstein systems which

have Lagrangians of the form (4.1) but for which the
matrix IIG;, II is singular. The singularity of the matrix,
however, simply implies that the momenta are not all
independent, and the lagrangian for such a system can
always be replaced by a Lagrangian for which IIG
nonsingular, together with a set of supplementary con-
ditions expressing the relations between the momenta.
The existence of such supplementary conditions does
not alter the discussion which follows.
Under general coordinate transformations the quan-

tities V, A;, and G;, transform like a scalar, a covariant
vector, and a covariant tensor respectively. V and A;
have respectively the nature of a scalar and a vector
potential. 6;; can likewise be regarded as a tensor
potential. However, it is a true potential only if it
cannot be "transformed away, " i.e., if there exists no
coordinate system in which it is everywhere constant.
We shall tentatively identify 6;;with the metric tensor
of the manifold of the x's—or rather with some con-
stRnt nlultlplc of lt

~v=~Cv (4.2)
We shall subsequently discuss in fuller detail the
reasons for this identification.
The Hamiltonian function corresponding to the

Lagrangian (4.1) has the form
&=(1/2I )g""(O' A')(P~ A;)+V — (4—3)

where g'~' is the contravariant inverse of the metric
tensor and the momenta are given by
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Unitary

Classical world  Quantum  world

Symplectic

Canonical transformations

( ·x, ·p) = ∇(x,p)G(x, p)( −𝕀
𝕀 )

G(x, p) = v(x) ⋅ p

point transformation

G(x, p) =
1
2

{v(x), p}

“quantized” point transformation

( ·x, ·p) = i[(x, p), G(x, p)]

Neural canonical transformations,  Li, Dong, Zhang, LW,  PRX ’20 Quantum generalization to fermions, Xie, Zhang, LW, 2105.08644  
see also Cranmer et al, 1904.05903 



Normalizing  
Flow

free electrons 
coordinates 

transformed  
electron coordinates

ρ = Uρ0U†ρ0

Neural canonical transformation

ℒ = Tr(ρ ln ρ) + βTr(Hρ)

Moreover, the flow should be permutation-equavariant 
to preserve fermionic statistics ⟨x |ρ |x′ ⟩ = (−1)𝒫⟨𝒫x |ρ |x′ ⟩



Backflow transformation

x′ i = xi + ∑
j≠i

η( |xi − xj | )(xj − xi)

Collective coordinates

Wigner & Seitz 1934, Feynman 1954, …

Nowadays, view it as a residual network, or, discretization of a flow 

Trial wave functions in QMC

The Slater-Jastrow wave function

Backflow transformations

Backflow in real systems

Conclusions

Backflow corrections in QMC

Pablo López Ríos

Backflow transformations

2. What is backflow?

A set of collective coordinates {x
i
(R)} is defined so that the 

resulting quasi-particles “avoid” each other:

1

2

3

Dynamical view of how quasi-particles ought to behave.

As 1 moves, 2 clears the way, while 3 barely notices
 Backflow transformations

: independent particlesΨ(x) : interacting particlesΨ(x′ )



Neural backflow transformation

Biloš et al 2010.03242
Köhler et al 1910.00753Pfau et al, 1909.02487

Hermann et al, 1909.08423 
Li et al 2008.02676

Wirnsberger et al, 2002.04913
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xt xt+1 = xt + v(xt)

deep set, transformer, …



Chen et al, 1806.07366

xt+1 = xt + f(xt) dx/dt = f(x)

Residual network Neural ODE

Harbor el al 1705.03341 
Lu et al 1710.10121,  
E Commun. Math. Stat 17’…

Continuous neural backflow transformation



∂ Ψn(x, t)
2

∂t
+ ∇ ⋅ ( |Ψn(x, t) |2 v) = 0

Continuous unitary transformation as a flow
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Dewitt 1952
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Simple density Complex density



FermiFlow: Equivariant flow of fermions

Physical picture: Variational approximation of adiabatic preparation of thermal equilibrium

Mathematics: Optimal control a PDE with particle method

Perm-equavariant normalizing flow/Neural ODE/Invertible ResNetML technique: 
(a)

(b)

(c)

free electrons 
coordinates 

transformed  
electron coordinates

ρ = Uρ0U†ρ0

dx
dt

= v

unitary transformation



Details: Objective function

“Local energy”

ℒ = 𝔼
n∼μn

[ln μn + β 𝔼
x∼pn(x)

[Eloc
n (x)]]

Eloc
n (x) = −

1
4

∇2ln pn(x) −
1
8 [∇ln pn(x)]2 + ∑

i<j

1
|xi − xj |

pn(x) = |Ψn(x) |2

Classical distribution 
parametrized by  for free electrons μn

0 < μn < 1 Discrete probabilistic model  
(Softmax, Autoregressive model,…)

Quantum distribution 
parametrized by the equivariant drift  v

Continuous probabilistic model  
(Permutation-equivariant continuous flow)

∑
n

μn = 1

Boltzmann  
distribution

Born  
rule



Details: Gradient estimators

∇θℒ = β 𝔼
n∼μn

𝔼
x∼pn(x)

[Eloc
n (x)∇θln pn(x)]

∇ϕℒ = 𝔼
n∼μn

[(ln μn + β 𝔼
x∼pn(x)

[Eloc
n (x)])∇ϕln μn]

Variance reduction in both estimators by subtracting baseline

Classical  
distribution 

Quantum  
distribution 

Nested REINFORCE 



Related works

PauliNet, neural backflow, Iterative backflow…
FermiNet, Pfau et al 1909.02487

Quantum 
Circuit

β-VQE, Liu, Mao, Zhang, LW 1912.11381  
Martyn et al 1812.01015, Verdon et al 1910.02071

Neural nets for ground state Quantum algorithms

Cranmer et al, 1904.05903 

F L O W S  A S  A  U N I TA R Y  O P E R AT O R

•Can view the quantum flow as a unitary operator

!38

1.3 Orthonormal basis of quantum flows

If we wish to build a flexibly orthonormal basis of wave functions ψi(x), we can extend the pre-
vious result. We begin with a fixed orthonormal basis φi(z), where the orthogonality condition
is:

∫
dz φi(z)φ∗

j (z) = δij (7)

If we change variables from z to x = f−1(z) we have:
∫

dz φi(z)φ∗
j (z) =

∫
dx

∣∣∣∣det
∂ f
∂x

∣∣∣∣ φi( f (x))φ∗
j ( f (x)) = δij (8)

Thus, by using a common flow f : X → Z, the orthogonality is maintained

ψi(x) = φi( f (x))
∣∣∣∣det

∂ f
∂x

∣∣∣∣

1
2

(9)

1.4 Adding phase degrees of freedom

The orthonormal basis can be extended by multiplying by a common phase

ψi(x) = φi( f (x))
∣∣∣∣det

∂ f
∂x

∣∣∣∣

1
2

eiη(x) (10)

for an arbitrary ηθ : X → R.
We can also express this as an integral operator

ψi(x) = U[φi(z)] =
∫

dz δ( f (x)− z)
∣∣∣∣det

∂ f
∂x

∣∣∣∣

1
2

eiη(x) [φi(z)] (11)

1.5 Comparison to an alternative approach

An alternative approach would be to build the family as

ψ(x) =
√

pX(x)eiη(x) (12)

where the density pX(x) may itself be defined by a flow. Note, in "Neural Network Quantum
State Tomography" pX(x) and η(x) were modeled with an RBM as x was discrete. This approach is
expressive for a single wave function, but imposing the ornogonality condition on multiple wave
functions is challenging.
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Demo: electrons in a 2D quantum dot
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6 spin-polarized electrons 

A. Classical electron configurations

In 1934, Wigner predicted that electrons crystallize
and form a lattice if the density of the three- or two-
dimensional electron gas is lowered beyond a certain
critical value. This is due to the fact that the Coulomb
energy increases relative to the kinetic energy and cor-
relations begin to strongly dominate the electronic struc-
ture. For a homogeneous three-dimensional electron
gas, such crystallization is expected at very low densities,
i.e., at large values of the average Wigner-Seitz radius
rs . For the critical value at which this transition occurs,
Ceperley and Alder (1980) reported the value rs
!100aB* . In two dimensions, however, this transition to
a Wigner-crystal-like state occurs at densities corre-
sponding to rs"37aB* (Tanatar and Ceperley, 1989). Ac-
cording to Rapisarda and Senatore (1996), the forma-
tion of the Wigner crystal is preceeded by a transition to
a polarized phase. If translational invariance is broken in
a two-dimensional electron gas, the critical density for
the transition to the Wigner crystal is shifted to the con-
siderably smaller value rs!7.5aB* (Chui and Tanatar,
1995). Thus one may speculate that, in finite systems
with broken translational invariance, localization should
occur at significantly larger densities than in the 2D
bulk. Studies along these lines were recently performed
by various authors (see, for example, Creffield et al.,
1999; Egger et al., 1999; Yannouleas and Landman, 1999;
Filinov, Bonitz, and Lozovik, 2001) using different cal-
culational methods. For circular and ring-shaped quan-
tum dots, we shall compare these results (which were
mostly based on the quantum Monte Carlo approach)
with those obtained by exact diagonalization.

In the low-density limit, where the electron gas be-
comes crystallized, it is not a priori obvious how the
electrons, now behaving as classical point charges, will
arrange geometrically in the harmonic trap. In the 2D
bulk, the crystal would form a triangular lattice (Tanatar
and Ceperely, 1989). For finite sizes, however, a compro-
mise must be found between the triangular lattice and
the shape of the confinement. Early studies of this prob-
lem were performed by Lozovik and Mandelshtam
(1990, 1992). Bolton and Rössler (1993) modeled the
classical charge distribution in Wigner-like states of a
quantum dot using a Monte Carlo algorithm (see Date,
Murthy, and Vathsan, 1998, for a general analytic ap-
proach.)

For the smallest systems N"5, simple polygons are
formed. The first nontrivial configurations are found for
N!6: in addition to the ground state with five particles
surrounding a single particle in the trap center, meta-
stable states and isomers at very similar energies exist.
The bent triangle shown in Fig. 19 is practically degen-
erate, with a perfect hexagon (not shown in Fig. 19). For
N!10, the ground state with a ‘‘dimer’’ in the center
and eight surrounding electrons has an isomer with a
triangular center and seven electrons on the outer ring.
The lowest-energy geometries obtained for 15, 19, 30,
and 34 point charges are shown in the other panels of
Fig. 19. Following Bolton and Rössler (1993), for the

smaller sizes the formation of a geometric shell pattern
can be observed, in which the electrons are arranged in
concentric rings. This was noticed earlier by Lozovik
and Mandelshtam (1990, 1992) and was also confirmed
by Bedanov and Peeters (1994) for somewhat larger N .
Each of these ringlike geometric shells can be filled with
a certain maximum number of particles, independent of
the confinement frequency. Bedanov and Peeters used
this property to group the configurations by the point
symmetry of the inner shell. When all geometric shells
are filled up to a maximum number of particles, a new
singly occupied shell is created in the center. If two
neighboring shells are filled with particle numbers that
are incommensurate, low-energy excitations in the form
of inner-shell rotations are found (Lozovik and Man-
delshtam, 1992; Schweigert and Peeters, 1994, 1995). In
the commensurate case, however, the configuration is
particularly stable against structural excitations and is
frequently called ‘‘magic,’’ in some analogy to the magic
shell closings discussed in the previous sections. We em-
phasize that the terminology of a ‘‘shell’’ used here must
not be confused with the grouping of levels in the
eigenspectra, which is why we should actually prefer
‘‘geometric shells’’ and ‘‘geometric magic numbers’’ to
describe the most stable classical electron configura-
tions. For large systems N"200, the center region of the
system very closely resembles a triangular lattice in
which all the particles are sixfold coordinated, while the
outer electrons form ringlike shells (Bedanov and
Peeters, 1994). Schweigert and Peeters (1994, 1995)
found that the melting of the classical configurations at
finite temperature begins by the rotation of neighboring

FIG. 19. Classical electron configurations: Left, schematic view
of the classical electron configurations in a parabolic potential
for N!6, 10, 15, 19, 30, and 34, after Bolton and Rössler, 1993;
right, classical ground-state configurations with geometric
shells (n1 ,n2 , . . . ), after Bedanov and Peeters, 1994. In some
cases, in particular for large N , the calculated configurations
differ from those observed in a macroscopic experimental
setup by Saint Jean, Even, and Guthmann, 2001. These con-
figurations are marked with a star.

1303S. M. Reimann and M. Manninen: Electronic structure of quantum dots

Rev. Mod. Phys., Vol. 74, No. 4, October 2002

Reimann et al, RMP ‘02
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Back to the uniform electron gas

Hartree-Fock

FCIQMC

33 spin polarized electrons @rs=1.0 
Reach 0.004 Hartree/electron  

ground state accuracy 
30 hours training on 8 GPUs
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Inconclusive results from perturbative diagrammatic approaches
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Fig. 8.21. Effective mass enhancement in a strictly two-dimensional electron liquid calculated in the
G0W approximation with the following effective interactions: RPA, KO including only the density
local field factor G+, and KO including both the density and the spin local field factors G+ and G−.
The calculation is done both in the on-shell approximation (OSA), Eq. (8.249), and making use of
the formally exact Dyson equation (8.146) (D). The local field factors are given by Eq. (A11.8) in
Appendix 11. The curve labeled QMC shows the results of the quantum Monte Carlo calculation by
Kwon et al. (1994). The three sets of symbols with error bars (P/S1U, P/S1L, and PS2) represent data
from different Si inversion layers samples. (Pudalov et al., 2002). The crosses represent measured
values of the effective mass in 2-dimensional GaAs samples (Zhu et al., 2003). The inset shows an
enlargement of the results for 0 ≤ rs ≤ 1. From Asgari et al., 2004.
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Fig. 8.22. Effective mass enhancements for the three-dimensional electron liquid. Effective masses
calculated from Eq. (8.146) are shown as solid lines, while the ones obtained from the on-shell ap-
proximation of Eq. (8.249) are shown as dashed lines. The local field factors are given by Eqs. (A11.5)
(for G+) and (A11.1–A11.4) (for G−). From Simion and Guiliani, 2005.

Landau’s Fermi liquid theory, 1956
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FIG. 6. m*/m as a function of the density 

forming the energy integrations, thus obtaining quadratic singularities. He then 
transformed the energy integration in the first term to the imaginary axis. How- 
ever, the quadratic singularity may now lie on the contour so that the integral is 
not now well-defined. We have repeated his calculation doing the energy integra- 
tion first in a manner similar to that described above. This criticism does not 
apply to the second-order terms as these were evaluated directly and not by 
transforming to the imaginary axis. The result obtained, using DuBois’ calcula- 
tion of the second order terms, is 

(18) 
+ 0.026a2r,2(log (c~r,/n))~ - .329a2ra2 + O(ra3) 

This result has the same pathological behavior for rs > 1 and so is useful only 
as a check on our calculations. 

Nozieres and Pines (5) (hereafter referred to as N.P.) proposed an alternative 
interpolation procedure in which the last momentum integration is performed 
graphically. The integrand for small values of the momentum transfer 4 is that 
obtained in the RPA; while q > 1.5, half of the second-order direct term is used, 
and in between one interpolates by drawing a straight line. Silverstein (10) has 
used the N.P. method to calculate m*. However, he made an error in the power 
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FIG. 3. Quasiparticle e↵ective masses m⇤ of paramagnetic
and ferromagnetic 3D-HEGs as functions of 1/N , where N is
the system size.

GW calculations with a random-phase-approximation-
screened free-electron model (SRPA) [55], suggest that
the e↵ective mass decreases at low density. The GW ap-
proximation is expected to be accurate at high density
(rs  1), which is consistent with the behavior shown
in Fig. 4, where the di↵erences between the various GW

results reduce as the density increases. Indeed, the dif-
ference between the DMC and GW e↵ective masses is
quite small at rs = 1. Recently, the single-particle exci-
tation spectra and quasiparticle e↵ective masses of 3D-
HEGs have been calculated using variational diagram-
matic Monte Carlo (VDMC) [53], in which high-order
Feynman diagrams are sampled using Monte Carlo meth-
ods [56]. The behavior of the VDMC e↵ective mass as a
function of density is close to some of the GW results, as
can be observed from Fig. 4. To the best of our knowl-
edge, there are no reliable experimental results for the ef-
fective mass of the 3D-HEG. However, the bandwidth of
Na metal, which has a band e↵ective mass (incorporating
crystal lattice e↵ects) of 1.23, has been measured [61, 62]
and can be compared with that of the 3D-HEG at den-
sity parameter rs = 4. Neither our DMC results nor the

FIG. 4. Quasiparticle e↵ective masses m⇤ of paramagnetic
(Para) and ferromagnetic (Ferro) 3D-HEGs at the infinite-
system-size limit as functions of density parameter rs. Padé
functions were fitted to the DMC quasiparticle energy bands
to determine the e↵ective mass. The many-body GWx and
variational diagrammatic Monte Carlo (VDMC) results are
from Refs. [52] and [53], respectively. The GW -SS and GW -
SRPA results are from Refs. [54] and [55], respectively. The
GW results are for paramagnetic 3D-HEGs.

existing VDMC and GW results explain the experimen-
tally estimated 18–25% bandwidth narrowing relative to
self-consistent band theoretical calculations [61, 62].

In summary, we have calculated the single-particle en-
ergy bands and quasiparticle e↵ective masses of para-
magnetic and ferromagnetic 3D-HEGs using the DMC
method. Two fitting functions, of Padé and quartic form,
have been used to obtain the gradient of the energy band
at the Fermi wavevector and hence the e↵ective mass
at each finite system size studied. We found that the
e↵ective masses of paramagnetic and ferromagnetic sys-
tems of any given finite size are almost independent of
the choice of trial wave function and the fitting func-
tion used. The DMC bandwidths of paramagnetic and
ferromagnetic 3D-HEGs are larger than that of the free-
electron model but smaller than the HF bandwidth at
all densities considered. The DMC bandwidth for a 3D-
HEG with density parameter rs = 4 agrees with previous
QMC results for the bandwidth of Na. A su�ciently
high precision is achieved in our simulations that the
systematic finite-size errors in the e↵ective masses can
be eliminated by extrapolation to the thermodynamic
limit. Our DMC results predict that the e↵ective mass
of the 3D-HEG decreases as the density decreases from
r1 = 1 to rs = 10. This reduction is more pronounced in
the ferromagnetic system than the paramagnetic system.
The good agreement between DMC results for Na and
the 3D-HEG indicates that the 3D-HEG provides a good

Azadi, Drummond, Foulkes, 2105.09139Haule, Chen,  2012.03146

rs Z m
⇤/m F

a

0 F
s

0
1 0.8725(2) 0.955(1) -0.171(1) -0.209(5)
2 0.7984(2) 0.943(3) -0.271(2) -0.39(1)
3 0.7219(2) 0.965(3) -0.329(3) -0.56(1)
4 0.6571(2) 0.996(3) -0.368(4) -0.83(2)

Table 1. Landau liquid parameters: The wave-function renormalization factor Z, effective mass m
⇤/m, and the Landau

parameters F
a

0 , F
s

0 for various values of the density parameter rs with the estimated error.

all higher-order terms have a well-defined maximum, which broadens and develops into a broad plateau with increasing order.
The insets of Figs. 2a-c show optimized Z versus perturbation order, where the first two orders are evaluated at the optimal l of
the third order, and for later orders, we take the value in the maximum. We also display the value of l used at each order. From
Fig. 2 it is apparent that beyond order three the rate of convergence to limiting value of Z is extremely fast, and therefore we can
confidently determine the first three digits of Z. The values and the estimated error-bar from the extrapolation and statistical
errors are shown in Table 1.

In Fig. 2d we compare our computed Z(rs) with the previous best available estimates, obtained by various flavors of
Monte Carlo (MC) methods, which are reproduced from Ref.14. Note that all these published MC methods rely on fixed node
approximation and the thermodynamic limit extrapolation, hence they have an inherent systematic error, nevertheless they turn
out to be in very good agreement with current VDMC results. Our current work based on VDMC has only statistical error,
and a small error in extrapolating in perturbation order, and is thus far more precise than previous best results. We notice that
previous MC results are broadly consistent with our results, with SJ-VMC method predicting slightly too large and BF-VMC
and BF-RMC slightly too small value. It is also well known that G0W0 predicts quite accurate Z values, however, we can now
confidently claim that in the range of metallic densities, G0W0 consistently underestimates Z.

Figure 3. Electron effective mass: The upper panel shows our calculated effective mass versus perturbation order for
rs = 1�4. The lower panel compares the rs dependence of the effective mass of this work (VDMC) with the prior analytic and
numeric work from Ref. 26.

Once the extremal value of l is determined, we compute the entire momentum and frequency dependence of the self-energy,
which allows us to determine also the momentum derivative of the self-energy, and hence the effective mass of the electron
through the relation

m

m⇤ = Z

✓
1+

m

kF

dS(kF ,w = 0)

dk

◆
(1)

The convergence of the effective mass ratio m
⇤/m with perturbation order is shown in Fig. 3a, and its dependence on rs is

displayed in Fig. 3b.
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Non-perturbative methods, still inconclusive 
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Quasiparticle effective mass for the two- and three-dimensional electron gas
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We calculate the quasiparticle effective mass for the electron gas in two and three dimensions in the metallic
region. We employ the single-particle scattering potential coming from the Sjölander-Stott theory and enforce
the Friedel sum rule by adjusting the effective electron mass in a scattering calculation. In three dimensions
~3D! our effective mass is a monotonically decreasing function of rs throughout the whole metallic domain, as
implied by the most recent numerical results. In two dimensions ~2D! we obtain reasonable agreement with the
experimental data, as well as with other calculations based on the Fermi-liquid theory. We also present results
of a variety of different treatments for the effective mass in 2D and 3D.

I. INTRODUCTION

The evaluation of the Fermi-surface parameters has been
a cornerstone of the Fermi-liquid theory since its early years.
Precise knowledge of these parameters for an electron gas,
especially in the metallic domain, is not only a fundamental
problem, but is also extremely important for physical appli-
cations. At present, there is some controversy about the
three-dimensional ~3D! results at metallic and overmetallic
densities. The two-dimensional results are also of significant
importance due to the recent nonvanishing interest in the 2D
physics stimulated by high-Tc superconductivity, the frac-
tional quantum Hall effect, as well as the development of 2D
electronic devices.
As is well known from textbooks, quasiparticle excita-

tions can be characterized by the renormalization constant
Z(kF), which is related to the residue of the Green’s function
at the Fermi surface, and the quasiparticle effective mass
m*. In a simple-minded physical picture, 12Z(kF) and
12m*/m both measure the amount of the many-body ef-
fects in the electron gas. In this paper we will be concerned
with the effective ~renormalized! electron mass. We will use
the effective potential coming from the Sjölander-Stott
theory,1 and find the effective electron mass by adjusting the
effective electron mass in a scattering calculation, so that the
Friedel sum rule is satisfied. Our approach is ‘‘hydrody-
namic’’ in a sense that it does not explicitly employ the mi-
croscopics of the Fermi liquid, however, it requires the ‘‘cor-
rect’’ static linear response function as an empirical input.
Thus, the Fermi-liquid character of the electron gas will
come in indirectly through the linear response that we use in
a parametrized form.
Below we will outline the GW format, which is a basis

for the majority of calculations of the Fermi-surface param-
eters. We will compare results of different approximation
schemes with ours. For both 2D and 3D our results are in a
reasonable agreement with the most recent calculations
based on the Fermi-liquid theory, as well as experimental
data.

II. EFFECTIVE MASS IN THREE DIMENSIONS

In this section we will outline the GW format for calcu-
lating the self-energy, and present numerical results for the
3D electron gas. It is well known that in 3D the effective
mass ratio m*/m is less than unity in the high-density limit.
The high-density expansion (rs!1) was obtained in Refs. 2
and 3. In the metallic region (1,rs,8) there has been some
controversy about the behavior of the effective-mass ratio as
a function of the ground-state density. The formalism for
evaluating the self-energy part was put forward by Hedin4
(GW approximation!. In a more rigorous formulation5 it can
be summarized as follows. The standard starting point is the
Dyson equation for the Green’s function:

Gs~k,v!5
1

v2´k
~0 !2Ss~k,v!

, ~1!

with ´k
(0) the unperturbed energy and Ss(k,v) the irreduc-

ible self-energy. The effective mass characterizes the quasi-
particle excitation spectrum,

´k5
k2

2m* , ~2!

and in terms of the self-energy is then given as

m*/m5S 12
]Ss~k,v!

]v U
k5kF

D S 11
m
k

]Ss~k,v!

]k U
k5kF

D
21

,

~3!

where m is the unrenormalized ~bare! electron mass. The
irreducible self-energy can be approximately expressed in
Dyson equation form as

Ss~k,v!5iE
dq

~2p!3E
dv8
2p

W~q,v8!Gs~k2q,v2v8!,

~4!

where the W function incorporates the many-body effects. In
general, it can be approximated by
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FIG. 8. (Color online) Quasiparticle effective mass m∗ against
density parameter rs for paramagnetic or partially spin-polarized
2D HEGs, as calculated or measured by different authors. The
experimental results are due to Smith and Stiles (Ref. 27), Tan et al.
(Ref. 3), and Padmanabhan et al. (Ref. 1) The GW results were
obtained using the random-phase-approximation (RPA) effective
interaction (Ref. 9) and the Kukkonen-Overhauser (KO) effective
interaction (Ref. 28) by solving the Dyson equation self-consistently
(SC) or within the on-shell approximation (OSA). We show the VMC
results of Kwon et al. (Ref. 29) [which were later confirmed at
the same system size at rs = 1 a.u. using transient-estimate DMC
calculations (Ref. 30)], the VMC results of Holzmann et al. (Ref. 23)
and the DMC results reported in our previous work (Ref. 20) as
well as the results of the present work. All the results shown are for
paramagnetic HEGs with the exception of the experimental results of
Ref. 1, which are for a partially spin-polarized HEG.

the GW results depend strongly on the choice of effective
interaction and whether or not the calculations are performed
self-consistently. At high density, e.g., rs ! 1, the GW ap-
proximation might be expected to be accurate; nevertheless
the disagreement between the GW and QMC effective masses
at rs = 1 is significant. The QMC calculations of Holzmann
et al.23 give quite different results from those of either
Kwon et al.,29 our previous work,20 or the present work. The
experimental data1,3 show some evidence for enhancement of
the effective mass at low density, although we do not see this
in our present results.

TABLE I. Extrapolated quasiparticle effective mass m∗(∞) and
χ 2 value for fits to the effective-mass data as a function of system size
for paramagnetic HEGs with different exponents γ in the finite-size
fitting formula [Eq. (4)].

m∗(∞) (a.u.) χ 2 (a.u.)

γ rs = 1 rs = 5 rs = 10 rs = 1 rs = 5 rs = 10

1/4 0.88 0.3 − 0.7 21.5 9.6 12.4
1/2 0.924 0.74 0.3 16.8 5.8 7.7
1 0.947 0.97 0.85 9.1 1.11 1.52
3/2 0.955 1.04 1.03 5.2 0.28 0.32
2 0.959 1.08 1.13 5.3 2.03 3.1
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FIG. 9. (Color online) Quasiparticle effective mass m∗ against
density parameter rs for ferromagnetic 2D HEGs. The GW results
were obtained using the Kukkonen-Overhauser (KO) effective inter-
action by solving the Dyson equation self-consistently (SC) or within
the on-shell approximation (OSA) (Ref. 31). The experimental results
are due to Padmanabhan et al. (Ref. 1). We show the DMC results
reported in our earlier work (Ref. 20) in addition to our current results.

It should be noted that the 2D electron systems studied in
the experiments differ from the ideal 2D HEG assumed in our
calculations in that the experimental systems have finite widths
and are subject to disorder. It would therefore be inappropriate
to make a precise quantitative comparison of our QMC data
with the existing experimental results; nevertheless we may
compare the qualitative behavior.

For the ferromagnetic case, our effective-mass data are in
broad agreement with the experimental results of Padmanab-
han et al.,1 showing a decrease in the effective mass as the
density is lowered. GW theory31 also predicts a suppression
of the effective mass in the range of densities considered.
However, the difference between the GW results obtained self-
consistently and in the on-shell approximation is significant,
as is the difference with the present results, even at the highest
density (rs = 1) for which QMC data are available.

V. CONCLUSIONS

We have used the DMC method to calculate the single-
particle energy band and hence quasiparticle effective mass of
the 2D HEG. We have achieved sufficiently high precision
in our calculations that systematic finite-size errors in the
quasiparticle effective mass can be observed and removed by
extrapolation. This leads to a revision of the effective masses
for paramagnetic HEGs at low density compared to our earlier

TABLE II. Quasiparticle effective masses for
paramagnetic and fully ferromagnetic 2D HEGs,
extrapolated to the thermodynamic limit.

Magnetic state rs m∗ (a.u.)

Paramagnetic 1 0.955(2)
Paramagnetic 5 1.04(2)
Paramagnetic 10 1.03(4)
Ferromagnetic 1 0.851(5)
Ferromagnetic 5 0.74(1)
Ferromagnetic 10 0.70(3)
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Figure 23.3. The left panel shows the inverse effective mass of the 2D HEG versus rs as computed
with two different ways of extracting the information from QMC; in [1044] (solid triangles),
computed using k-values very close to kF ; in [1045] (open circles), averaged over excitations
0 ≤ k ≤ 1.3kF . Also shown are analytic calculations using a local field factor [1046] (dashed line),
or using the screened RPA [1047] (solid line). The right figure shows the finite-size effects in the
QMC effective mass calculations at rs = 10, from [1044].

mass differs because of the way it is calculated from the QMC energies. Drummond and
Needs [1045] fitted the excitation energy over a wide range of excitations 0 ≤ k ≤ 1.3kF

and specifically excluded values near the Fermi surface; the effective mass was determined
by differentiating the analytic fit. Holzmann et al. [1044] only used excitations near the
Fermi surface and applied a large finite-size correction to the effective mass, as shown in
the right panel of Fig. 23.3. Resolving these different methods of analysis comes down to
deciding the range of validity of Fermi liquid theory. For an infinite system, Fermi liquid
theory only applies for excitations near the Fermi surface. Since excitations away from kF

acquire a finite lifetime, it is not clear whether the QMC excitation energies of the finite
system correspond to quasi-particle peaks in the spectral function and whether using them
can introduce a bias in the determination of the effective mass.

23.8 Strengths and weaknesses of VMC

The variational method is very powerful and intuitively pleasing. By only assuming a func-
tional form for the wavefunction, one obtains an upper bound to the energy. In contrast to
other many-body correlated methods, no further uncontrolled approximations need to be
made. The only restriction on the trial function is that it must be computable. With a Slater–
Jastrow trial wavefunction one can do calculations with thousands of electrons. To be sure,
the numerical work has to be done very carefully, e.g., the convergence of the random walk
has to be tested and dependence on system size needs to be corrected for. To motivate the
methods to be described in the next two chapters, we list some of the intrinsic problems
with the variational method.

! The variational method is biased to give a relatively lower energy to a simple state over
a more complicated state. Consider the estimation of the melting density of the Wigner

Martin, Reining, Ceperley, Interacting Electrons ‘16
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as the guiding function17 and generate a set of M many-body coordinates {R(k)}. Using a
random walk sampling |ψG|2, the two matrices18 can be estimated as:

N̄ij = 1
M

M∑

k=1

f ∗i (R(k))fj(R(k)), H̄ij = 1
M

M∑

k=1

f ∗i (R(k))fj(R(k))ELj(R(k)), (23.30)

where fj(R) ≡ "j(R)/"G(R) is the weight of the jth state and ELj(R) is its local energy. The
energy differences will have a much smaller error than the individual energies do, since
fluctuations unconnected with the excitation will cancel, an example of what is called in
Monte Carlo “correlated sampling.” See [1043] for details.

A fundamental problem with excited states is that with higher excitations, the wave-
functions get more complex and the approximations we use for the ground state are less
accurate. An accurate variational treatment would require a much larger basis. Other meth-
ods, such as path-integral Monte Carlo, described in Ch. 25, which is formulated at finite
temperature, are more appropriate when there are many states to sum over. In the correla-
tion function quantum Monte Carlo method (Sec. 25.7) one uses the hamiltonian to project
out lower-energy excitations from the wavefunction basis, thus achieving tighter upper
bounds. If convergence can be achieved, one attains the exact energy within the statistical
error.

As an application of the calculation of excited states, consider the Fermi liquid
parameters defined in Sec. 3.4. Using the method described above, we can calculate
the ground state and the lowest excitations of the system. For the homogeneous elec-
tron gas the ground state at high density consists of filled shells of plane-wave orbitals
allowed by periodic boundary conditions; see Fig. 6.1. We consider excited states where
a single electron from the last occupied shell is replaced by one in the first unoccu-
pied shell. Because these excitations have different total momenta from each other and
from the ground state, the states are orthogonal so calculation of the overlap matrix
is not needed. Two different excitations, spin-parallel excitations and spin-antiparallel
ones, are possible; the results are reported in [1043]. Because the electron and hole
states will interact in a finite system, the excitation energy will have important finite-
size corrections. An alternative procedure [1044, 1045] is to add or subtract a single
electron from the ground state. This does not have a problem with the electron–hole
interaction, but there are other finite-size effects to consider, and one can only calculate
parameters having to do with a single-particle excitation such as the effective mass and
bandwidth.

The effective mass is defined in Sec. 3.4. Two quite different QMC results for the 2D
HEG are shown in Fig. 23.3 and compared with screened RPA and local field method
results. The two different QMC calculations were done in a similar way, but the effective

17 Optimizing the variance of the excitation energies [1041] finds that the optimal guiding function will have the
form "G(R)2 = ∑

k |#k(R)|2; i.e., it is determined by the states to be calculated. This “guiding function” is
non-negative and zero only where all states under consideration have zeros.

18 Due to fluctuations, H will not be symmetric. One should not symmetrize it, since that will destroy the zero-
variance property; see [1042].
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Figure 23.3. The left panel shows the inverse effective mass of the 2D HEG versus rs as computed
with two different ways of extracting the information from QMC; in [1044] (solid triangles),
computed using k-values very close to kF ; in [1045] (open circles), averaged over excitations
0 ≤ k ≤ 1.3kF . Also shown are analytic calculations using a local field factor [1046] (dashed line),
or using the screened RPA [1047] (solid line). The right figure shows the finite-size effects in the
QMC effective mass calculations at rs = 10, from [1044].

mass differs because of the way it is calculated from the QMC energies. Drummond and
Needs [1045] fitted the excitation energy over a wide range of excitations 0 ≤ k ≤ 1.3kF

and specifically excluded values near the Fermi surface; the effective mass was determined
by differentiating the analytic fit. Holzmann et al. [1044] only used excitations near the
Fermi surface and applied a large finite-size correction to the effective mass, as shown in
the right panel of Fig. 23.3. Resolving these different methods of analysis comes down to
deciding the range of validity of Fermi liquid theory. For an infinite system, Fermi liquid
theory only applies for excitations near the Fermi surface. Since excitations away from kF

acquire a finite lifetime, it is not clear whether the QMC excitation energies of the finite
system correspond to quasi-particle peaks in the spectral function and whether using them
can introduce a bias in the determination of the effective mass.

23.8 Strengths and weaknesses of VMC

The variational method is very powerful and intuitively pleasing. By only assuming a func-
tional form for the wavefunction, one obtains an upper bound to the energy. In contrast to
other many-body correlated methods, no further uncontrolled approximations need to be
made. The only restriction on the trial function is that it must be computable. With a Slater–
Jastrow trial wavefunction one can do calculations with thousands of electrons. To be sure,
the numerical work has to be done very carefully, e.g., the convergence of the random walk
has to be tested and dependence on system size needs to be corrected for. To motivate the
methods to be described in the next two chapters, we list some of the intrinsic problems
with the variational method.

! The variational method is biased to give a relatively lower energy to a simple state over
a more complicated state. Consider the estimation of the melting density of the Wigner



m*
m

=
s
s0

s =
m*kF

3ℏ2n
k2

BTs0 =
mkF

3ℏ2n
k2

BT

Effective mass from thermodynamics

Previous calculations can not reach the low temperature region 
Moreover, entropy is not directly accessible to PIMC

Eich, Holzmann, Vignale, PRB ‘17

Interacting/noninteracting entropy ratio 



14 electrons @ T/Ef=0.08



Thank you!
Linfeng ZhangHao Xie2105.08644 buwantaiji/FermiFlow

Outlooks

Warm dense matter

Ultracold fermi gases Dense hydrogen

Thermal density functionals


