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Ref: YA and T. Sagawa, Comm. Phys. 4, 45 (2021).



Motivation: What is the “best’”’ nanoscale heat engines?

Remarkable developments in the ability to control nanoscale heat engines:

Single trapped ion Quantum dot Colloidal particle
S ')AVidi”,“”kSL
e R 2 — bimeric particle
IBZO nm Elliptically rotating
- Chromium
30 um electrodes
J. Rossnagel et al., M. Josefsson et al., S. Toyabe et al.,
Science 352, 6283 (20106). Nat. Nanotech. 13, 920 (2018). Nat. Phys. 6, 988 (2010).

So far, single-particle or noninteracting regimes are well explored.

Toward realizing high power, one has to assemble a large number of microscopic engines,
in which interaction effects become essential.



Motivation: What is the “best’”’ nanoscale heat engines?

Remarkable developments in the ability to control nanoscale heat engines:

Trapped ions Quantum-dot array Colloidal particles
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Univ. Innsbruck . Piquero-Zulaica et al., P.J. Luetal,
Nat. Commun. 8, 787 (2017). Annu. Rev. Cond. Matt. 4, 217 (2013).

So far, single-particle or noninteracting regimes are well explored.

Toward realizing high power, one has to assemble a large number of microscopic engines,
in which interaction effects become essential.

What is the "best” nanoscale heat engines with interactions?



Motivation: What is the ‘“best’” nanoscale heat engines?

Machine Learning
/Optimization

Search for the
best nanoscale
(\—/

Stochastic Thermodynamics

heat engines.

So far, single-particle or noninteracting regimes are well explored.

Toward realizing high power, one has to assemble a large number of microscopic engines,
in which interaction effects become essential.

What is the "best" nanoscale heat engines with interactions?



The “best’ heat engines as Pareto-optimal solutions

Two conflicting objectives: thermodynamic efficiency and power

Carnot efficiency:

Efficiency
nNe

PP oy
Power

Both of objectives cannot be optimized
simultaneously in general.

The best heat engines =

A set of engines whose efficiency and
power cannot be further improved
without comprising the other.

=  “Pareto front”

cf. Sawaragi et al.,
Theory of multiobjective optimization. (1985).

Specific examples: Carnot machine, heat
engine operating at the maximum powetr.

e
1
K Optimize the model parameters to find
the best thermodynamic tradeoff



The “best’” thermoelectric heat engines in linear-response regime

Thermoelectric system as a steady-state heat engine:
Convert heat flows into work in the form of electrical power.

Cold
8 reservoir

C 'uc

system

/ Heat flow
Hot

reservoir /
%N



The “best’” thermoelectric heat engines in linear-response regime

Thermoelectric system as a steady-state heat engine:
Convert heat flows into work in the form of electrical power.

Linear-response formula
(cf. Benenti, Casati, Saito and Whitney, Phys. Rep. 694 (2017)):

n(P) P/(Q5T?/4)
e 9 [1 +2/2T F /1 P/(Q5T2/4)}

7' :figure of merit () : power factor
T +1—-1
1< vZT+ P < Q6T?/4
nc ~ VZT +1+1 -
Relation to transport coefficients:
5 S2T QT O : electrical conductance

2T =

K :thermal conductivity
K K

S : Seebeck coefficient



The “best’” thermoelectric heat engines in linear-response regime

Thermoelectric system as a steady-state heat engine:
Convert heat flows into work in the form of electrical power.

Linear-response formula
(cf. Benenti, Casati, Saito and Whitney, Phys. Rep. 694 (2017)):

n(P) _ P/(QdT2/4)

In the | inear'-r'esponsé regime, the search for the best heat
engines reduces to finding the Pareto front on the Q-ZT plane.

Pareto front on Q-ZT plane | Envelope of "lasso” curves
= Pareto front on P-n plane.
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Model: interacting fermions in the sequential regime

Prototypical and generic model for interacting fermions:

1
H — Z(El — ’Ug)nl -+ 5 Z Wim M Mom,
[

l#m
€] :single-electron modes ?Jg : ground voltage
1| : electron occupancy Wim : repulsive interaction

Graphical

representation “interaction network”

Node: single-electron level
Edge: interaction between nodes

Our aim: finding a set of the best heat engines in the presence of interaction
= optimization of "network topology” in the graphical representation.



Calculations of ZT and Q

We neglect quantum coherence; the dynamics is described by
the classical master equation (=Stochastic Thermodynamics)
cf. Seifert, Rep Prog. Phys. 75 126001 (2012)

dpq b
_ Wa ’ Wa — Fa - 5a F ’ F p— F FC ’
o Eb bPb b b b Ed db +

\ Nt « 9Nf transfer matrix

For the matrix elements between many-body states a and b whose particle-
number difference is one, we set the detailed balance conditions:

Fermi distribution Entropy production
) ) 1 ) E, — Ey 122
= ) 5 . 3 — ’ 5 wb = NCL—N o ’
= I Gsia)y F(@) = o Osta = TP (V= ) ()

Reservoir: 1 = h,c

Steady-state solution: W p> = (0




Calculations of ZT and Q

We work in the linear-response regime:

or =T — T, < Ty, op] = |pn — pe|] < kTh

01T = 0,0 # 0
0T #0,0u=0"
we calculate the Onsager matrix and figure of merit ZT and power factor Q accordingly

O'S2T L12L21 2 L%Q Jh 5M/T
K det(L)’ =05 T3Lq1 J 6oT/T% )

Using the steady-state values of the currents (J*°, J;S)Tfor [

h )
Jq : heat current out of the hot reservoir

Jh : particle current out of the hot reservoir

ou<0if §>0
o >0 if S <0

(*System works as a heat engine when we set) [



Previous studies in noninteracting regimes

Noninteracting case: Wim — 0

The best engine in the ideal situation:

perfectly degenerate single-electron levels
61262:"':€Nf DOS- A

cf. Mahan & Sofo, PNAS 93, 7436 (1996).

ZT — 00 Qo Ny

) tight-coupling condition satisfied: J o Jq

ideal

=

<
- Interaction?
The best engine in a realistic situation: DOS realistic
(imposing upperbound on DOS) bound
nondegenerate single-electron levels 0 | |
e
€1 < €2 < -+ < ENy ’ O(NJQ P x Ny
cf. Whitney, PRB 91, 115425 (2015).
. 0 . -
ZT finite Q) < Ny Can interaction push up the bound

close to the ideal case?



Problem setting and optimization algorithm

Problem: Given generic (nondegenerate) single-electron levels €; < e <--- <en,,

find a set of the optimal parameters W = {v,, {’wzm}z>m},
which provide the Pareto front on the Q-ZT plane.

Strategy:

1. Maximize Q with respect to )V via solving the single-objective optimization problem.
— |dentifying an unambiguous element for the Pareto front.

ZT

2. Search the Pareto front starting from the above solution.

The iterative alternate method: Q
Custodio et al., SIAM J. Optim. 21, 1109 (2011).

Optimizing (training) )\fo maximize efficiency and power
= "Reinforcement learning” of the underlying topology and
weights of the interaction network.




Learning the best heat engines via global search

The optimization problem is challenging: local (gradient-based) algorithms failed.

ot <€— |ocal optimum

SQP
| |===quasi-Newton
== interior-point

o
o
N

o
o
®

objective -Q
1 Io 1
o
Y

o
o
o

o
—

10° 10" 102 103
iterations



Visualizing the optimization landscape

v Global
optimum

cf. Goodfellow et al., ICLR 2015.
L(a, B) = —QOWg + ad + 1))
Randomly generate vectors: ¢, 9 € RY 4 =1+ Ni(N;—1)/2

Optimal solution: WZ?

We then plot L as a function of a« and 3, which gives
the 2D projection of the d-dimensional optimization

landscape.



Learning the best heat engines via global search

The optimization problem is challenging: local (gradient-based) algorithms failed.

@ -0.02 \ \k\ ] _

o 3 <€— |ocal optimum
2 -0.04 ¢ ]

O

o

o-0.06

© SQP

— i-Newt
-0.08 [|— Maror-paint. <— Global optimum
o . A
10° 10° 102 10°
iterations
Visualizing the optimization landscape: Differential evolution:
one of the most competitive global search algorithm
highly nonconvex Stron & Price Tech. Rep. 95-012 (1995).

Wang et al., IEEE Trans. Evol. 15, (2011).

v Global
optimum

https://pablormier.github.io



Results: representative examples for N, =5 levels

ning
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Noninteracting case

Interaction network

State-transfer network

Only a few edges activated — low power output

Modest ZT~10 at the highest power
') nonzero heat flow at zero particle current
(= bipolar effect)

*Qualitatively consistent with previous studies.
cf. Whitney, PRB 91, 115425 (2015).



Results: representative examples for N, =5 levels
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Interacting case, highest power factor Q

Interaction network State-transfer network
1
2 5
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3 4

Maximum power achieved by a sparse interaction:

1. Degeneracy of single-hole excitation energies
(activating many transfer edges—high power)

2. Suppressing hole-hole interactions
(nondiverging, but still large ZT)



Results: representative examples for N, =5 levels
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Interacting case, intermediate Q and ZT

Interaction network
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Making interaction stronger and denser, ZT is
improved at the expense of compromising Q.

~+) Strong and dense interaction isolates a
particular energy manifold, realizing the
approximate tight-coupling condition: J o Jq



Results: representative examples for N, =5 levels

10—y . .
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Further increasing interaction, one can isolate two
particular levels far from other many-body levels.

-~ q The divergence of ZT originates from almost perfect
ST os on unicyclic structure in the probability flow, ensuring
PAQu6T74) the tight-coupling condition J ox Jq




Results at larger highest-power machines and finite-size scaling analysis
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Fundamental bound on Q per level
cf. Esposito et al., EPL 85, 60010 (2009).

(noninteracting) Qmax o< Ny “h,c : tunneling rates



Results at larger highest-power machines and finite-size scaling analysis
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Conditions for the highest-power heat engines

Given generic single-electron levels {el} , We conjecture that
the highest-power machine is achieved by satisfying the following conditions:

(i) Single-hole excitation energies are degenerate (Nf — 1 constraints):
|€l — 6l—|—1’ L kT, e =¢+ Z Wim
m£l

(i) At most N, — 1 variables of {wim }i=m c€an be nonzero (sparse interaction).

(iii) The ground voltage is set to be Vg = ey, + kT’ i

cf. Murphy et al., PRB 78, 161406 (2008). o ~ 2 40
Esposito et al., EPL 85, 60010 (2009). - =

For any {¢; there in general exist an excessive number of
solutions for {w., },which allow for the highest power
— flexible design of optimal nanoscale engines.

*In noninteracting case, the highest power is possible only if €1 = €2 = - -+ = €N,



Conditions for the highest-power heat engines
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Conditions for the highest-power heat engines
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Possible experimental relevance

Quantum-dot array
* Coulomb interactions in dense regimes.

* Two prototypical configurations for
the highest power with €1 < e <--- <eny,

[ b

2
4 /
5 ©6
E »
5 1
2 g & & £, g,
3 o

space

Trapped ions

Lens

Corrugated

+ .
8 ions potential
Xi (

X () < Force™
Bylinskii et al.,
Science 348, 6239 (2015).

Noise of electric fields act as
equilibrium baths.

Inevitable Coulomb interactions.

Single-particle manipulation
realized.



Summary

We develop a global-optimization framework to identify the best tradeoff
relation in the multiple objectives for interacting nanoscale machines.

We apply it to optimizing power and efficiency in nanothermoelectrics to
find a set of the best heat engines.

For generic single-electron levels, thermoelectric figure of merit and power factor can
in principle be enhanced by orders of magnitudes in the presence of interaction.

Our findings could be of relevance to quantum-dot array and trapped ions.

Outlook:

v Application to other nanosystems described by the master equation
(such as solar photovoltaics, molecular motors and biophysics networks).

v Multiobjective optimization with other objectives; finding a way to maximize solar power,
molecular mobility and biophysical-reaction yield while keeping high efficiency.

v Role of nonlinear effects, gquantum many-body effects (e.g., Kondo physics),
and time-reversal symmetry breaking in interacting nano-heat engines.

Ref: YA and T. Sagawa, Commun. Phys. 4, 45 (2021).



