

➤ LIGO/Virgoがブラックホール連星由来の重力波を初観測 (2015年)

PRL 116, 061102 (2016)Selected for a Viewpoint in PhysicsPRL 116, 061102 (2016)PHYSICAL REVIEW LETTERS

week ending 12 FEBRUARY 2016

S

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott *et al.*^{*} (LIGO Scientific Collaboration and Virgo Collaboration) (Received 21 January 2016; published 11 February 2016)

これが動機付けとなり、連星系の運動をpost-Newtonian理論あるいは

post-Minkowskian型論で解析的に求める手法が近年発達している。

➤ これらの手法において、ファインマン積分というものを評価する必要がある
 (特に、post-Minkowskian理論に現れるものをpost-Minkowskian積分と呼ぼう)。
 例えば

$$I = e^{2\epsilon\gamma_E} \int \frac{d^d l_1 d^d l_2}{\pi^d} \frac{(\boldsymbol{q}^2)^{3-d}}{(\boldsymbol{l}_1^2 - i0)(\boldsymbol{l}_2^2 - i0)((\boldsymbol{l}_1 + \boldsymbol{l}_2 - \boldsymbol{q})^2 - i0)}$$

ベクトルの次元は $d=3-2\epsilon$ で、q は与えられた定ベクトル。 ϵ に関して 展開した形がわかれば十分なのだが、この例ではそもそも解析的に計算できて、

$$I = e^{2\epsilon\gamma_E} \frac{\Gamma(1/2 - \epsilon)^3 \Gamma(2\epsilon)}{\Gamma(3/2 - 3\epsilon)} = \frac{\pi}{\epsilon} + 6\pi - \pi \left(\frac{7}{6}\pi^2 - 36\right)\epsilon + \cdots$$

と求まる。

▶ 先の例は簡単な場合 (3PM = post-Minkowskian orderの3次)だが、5PMだと例えば

$$I = e^{4\epsilon\gamma_E} \int \frac{d^d l_1 d^d l_2 d^d l_3 d^d l_4}{\pi^{2d}} \frac{(q^2)^{6-2d}}{(u \cdot l_1 - i0)(u \cdot l_2 - i0)(l_1^2)(l_2^2)(l_3^2)(l_4^2)((l_1 + l_2 + l_3 + l_4 - q)^2)}$$

➤ ここで、uは q と直交する単位ベクトルで、簡単のため一部 -i0 を省略した (本当は (l²₁)は (l²₁ - i0)の意)。これも何とか計算できて、

▶ 将来的にはこれをより高いPM orderで求めないといけない。解析解は望み薄。

▶ フルの解析解が手に入らなくても、 cの必要次数まで展開係数が解析的に分かれば よい。その際に用いられる手法がPSLQ: [Bailey&Ferguson '91] [Bailey&Broadhurst '01]

> An algorithm which can be used to find integer relations between real numbers $x_1, ..., x_n$ such that $a_1 x_1 + a_2 x_2 + ... + a_n x_n = 0$,

[Wolfram mathworld]

要するに、(少なくとも数値的にある程度わかっている) 実数 x_1, x_2, \cdots に対し、 $a_1x_1 + a_2x_2 + \cdots = 0$ を満たす整数 a_1, a_2, \cdots を見つけてくれる

▶ 例えば $I = \frac{c_2}{\epsilon^2} + \frac{c_1}{\epsilon} + c_0 \epsilon^0 + \cdots$ で、 $c_0 = 38.5749 \cdots$ と数値的にわかっていて、かつ $c_0 = a_1 \pi^2 + a_2 \pi \ln 2 + a_3 \ln^2 2$ と知っている場合、 $(a_1, a_2, a_3) = (3, 5, -4)$ と当ててくれる

FindIntegerNullVector[{Pi^2,Pi*Log[2],Log[2]^2,38.574931599113280810	
$\{-3, -5, 4, 1\}$	たくさんの桁が必要!

PSLQ Algorithm

➤ この展開係数の数値評価に、機械学習を用いたアルゴリズムである normalizing flowを使用し、スタンダードなMonte-Carloアルゴリズムと比較した。 結果:積分の複雑さが上がるほど、機械学習を用いたアルゴリズムの方が良くなる

▶実は、本講演の例 (post-Minkowskian積分) では別の手法が発展する可能性が あるため、機械学習が取って代わると断言はできない。しかしながら、少なくとも normalizing flowが持つ可能性を示す例にはなっている。

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a

アインシュタイン方程式

▶ アインシュタイン方程式:

一般相対性理論において、時空及び物質の時間発展を決める方程式。

$$frac{\pi}{2} \pi F G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} F'$$

"Space-time tells matter how to move. Matter tells space-time how to curve."

John Wheeler

アインシ
アインシュタ
一般相対性理

$$h タ + G_{\mu\nu} = \frac{8\pi G}{c^4}$$

 $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R, \quad R = g^{\mu\nu}R_{\mu\nu}$
 $R_{\mu\nu} = \partial_{\rho}\Gamma^{\rho}_{\nu\mu} - \partial_{\nu}\Gamma^{\rho}_{\rho\mu} + \Gamma^{\rho}_{\rho\sigma}\Gamma^{\sigma}_{\nu\mu} - \Gamma^{\rho}_{\nu\sigma}\Gamma^{\sigma}_{\rho\mu}, \quad \partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$
 $G \simeq 6.67 \times 10^{-11} \,\mathrm{m}^{3}\mathrm{kg}^{-1}\mathrm{s}^{-2}$
 $:= 2 - F \vee \Xi$
物質のエネルギー運動量テンソル
 $E \swarrow$

<u>時空</u> (= 時間と空間を統一的に扱ったもの)

計量 $g_{\mu\nu}$ で記述される。計量とは、微小距離 ds を座標 x^{μ} の微小差分 dx^{μ} で表した ときの係数: $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = g_{00}dx^0dx^0 + g_{11}dx^1dx^1 + \cdots$ (時間座標 x^0 , 空間座標 x^i (i = 1, 2, 3))

<u>物質</u>

本トークではこれが「連星系」に相当する。

アインシュタイン方程式の非線形性

▶ 以下、アインシュタイン方程式は非常に非線形な方程式であることに注意。 なぜ? → 左辺が計量 $g_{\mu\nu}$ のnon-linearな関数だから

$$\begin{array}{c} & & & \\ & & & \\$$

$$G_{\mu\nu} = \frac{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}{\stackrel{\uparrow}{R_{\#\#} \text{ or } R \sim \frac{\partial_{\#}\Gamma^{\#}_{\#\#} - \partial_{\#}\Gamma^{\#}_{\#\#} + \Gamma^{\#}_{\#\#}\Gamma^{\#}_{\#\#} - \Gamma^{\#}_{\#\#}\Gamma^{\#}_{\#\#}}{\stackrel{\uparrow}{\Gamma^{\#}_{\#\#} \sim \frac{1}{2}g^{\#\#}(\partial_{\#}g_{\#\#} + \partial_{\#}g_{\#\#} - \partial_{\#}g_{\#\#})}}$$

連星系の時間発展

▶ ブラックホール連星系の時間発展と、興味のある領域

POST-NEWTONIAN & POST-MINKOWSKIAN

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a

POST-NEWTONIAN, 伝統的アプローチ

post-Newtonian理論 = 1/c (c = 光速度)に関する展開 [Einstein, Infeld, Hoffmann '37]

▶ 典型的に連星系の速度 v との組み合わせ (v/c) で 現れるため、v/c 展開とも呼ばれる (厳密にはc[m/s]は他の場所にも現れるため、これは正確ではない see e.g. [Blanchet '14])

POST-NEWTONIAN, 伝統的アプローチ

post-Newtonian理論 = 1/c (c = 光速度)に関する展開 [Einstein, Infeld, Hoffmann '37]

- ▶ 典型的に連星系の速度 v との組み合わせ (v/c) で 現れるため、v/c 展開とも呼ばれる (厳密にはc[m/s]は他の場所にも現れるため、これは正確ではない see e.g. [Blanchet '14])
- ▶ 1/c 展開のleading orderではNewtonian potentialを再現する

<u>チェック</u> $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ かつ「時間微分(1/c)($\partial/\partial t$) ≪ 空間微分($\partial/\partial x$)」として展開

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} \rightarrow \nabla^2 h_{00} = \frac{8\pi G}{c^4}T_{00} \qquad -\frac{\rho = c^4 T_{00}}{\Phi} = h_{00}/2$$

モノがあると → 重力ポテンシャルができる

これは実際重力ポテンシャルの満たすポアソン方程式 $\nabla^2 \Phi = 4\pi G \rho$ で、 質点 $\rho = m\delta^{(3)}(\vec{x})$ を考えると高校物理でやる $\Phi = -G\frac{m}{r}$ になる

POST-NEWTONIAN, 伝統的アプローチ

- ▶ 1/c 展開のnext-leading order [Einstein, Infeld, Hoffmann '37]; see also [Kei Yamada '14 (Ph.D thesis)]
 - 式を簡単にするため、harmonic gaugeというゲージを取る

$$h^{\mu\nu} = \sqrt{-g} g^{\mu\nu} - \eta^{\mu\nu} \quad i \subset \text{対} \ \cup \quad \partial_{\mu} h^{\alpha\mu} = 0$$

- アインシュタイン方程式は、近似なしで次の形になる ($\Box = \eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$) e.g. [Blanchet '14]

- 適切に 1/c 展開して計算すると、今日ではEinstein-Infeld-Hoffmann Lagrangianと 呼ばれるLagrangianが出る

$$L = L_{\text{Newton}} + L_{\text{EIH}} = \left[\frac{1}{2}\sum_{a=1,2}m_a v^2 + \frac{Gm_1m_2}{r}\right] + \frac{1}{c^2} \left[\frac{1}{8}\sum_{a=1,2}m_a v_a^4 + \frac{Gm_1m_2}{2r}\left[3(v_1^2 + v_1^2) - 7(v_1 \cdot v_2) - \frac{(v_1 \cdot r)(v_2 \cdot r)}{r^2}\right] - \frac{G^2m_1m_2(m_1 + m_2)}{2r^2}\right] \\ \sim mv^4 \qquad \sim \frac{Gm^2v^2}{r} \qquad \sim \frac{G^2m^3}{r^2}$$

POST-NEWTONIAN & POST-MINKOWSKIAN

$POST-NEWTONIAN, EFT \mathcal{T} D - \mathcal{F}$ [Goldberger&Rothstein '06]

- ▶ EFT (effective field thoery)を用いた、よりシステマティックなアプローチが [Goldberger&Rothstein '06] で提唱され、以降こちらが主流になった
- ▶ 簡単のため、重力ではなくmasslessスカラー φ が力を媒介する場合を考えよう e.g. [Porto '16]

- 質点にmasslessスカラー場が結合した理論を考える: $S[\phi, J] = \int d^4x \left[\frac{1}{2} (\partial \phi)^2 + J(x)\phi(x) \right]$

- 質点はソースJに入っている: $J(t, \mathbf{x}) = \sum_{a=1,2} \frac{m_a}{M_{\phi}} \delta^3(\mathbf{x} \mathbf{x}_a(t))$ 電点1,2の軌道 結合の強さをコントロールする定
- ϕ をintegrate outして質点に対する有効作用を求める $e^{iS_{eff}[J]} = \int \mathcal{D}\phi e^{iS[\phi,J]}$ のだが、 その際、古典的プロセスに対応するダイアグラムだけ取り入れる。例えば上図。

POST-NEWTONIAN, EFTアプローチ [Goldberger&Rothstein '06]

▶ すると実際、Newtonian potentialが出る

$$S_{\text{eff}}[J] \supset \frac{i}{2} \int_{x} \int_{x'} J(x) \Delta_{F}(x-x') J(x') \supset -\frac{m_{1}m_{2}}{M_{\phi}^{2}} \int_{x} \int_{x'} \delta^{3}(x-x_{1}(x^{0})) \delta^{3}(x'-x_{2}(x'^{0})) \int_{p} \frac{1}{(p \phi)^{2} f c^{2} - p^{2} + i0} e^{-ip(x-x')}$$

$$\approx \frac{m_{1}m_{2}}{M_{\phi}^{2}} \int dt \int_{p} \frac{1}{p^{2} - i0} e^{-ip \cdot (x_{1}(t) - x_{2}(t)))} \sim \int dt \frac{m_{1}m_{2}}{4\pi M_{\phi}^{2} |x_{1}(t) - x_{2}(t)|}$$
Newtonian potential $-\frac{m_{1}m_{2}}{4\pi M_{\phi}^{2} |r}$

$$\frac{X}{|x|^{2}}$$

で取り入れて、 v^2/c^2 型の補正が出る (ただしr(t) = |x_1(t) - x_2(t)|, v_1(t) = \dot{x}_1(t), v_2(t) = \dot{x}_2(t))

$$S_{\text{eff}}[J] \quad \supset \quad \cdots \quad \supset \quad -\int dt \; \frac{m_1 m_2}{8\pi M_{\phi}^2} \frac{1}{r(t)^3} \frac{(v_1(t) \cdot v_2(t)) r(t)^2 - (v_1(t) \cdot r(t))(v_2(t) \cdot r(t))}{c^2}$$

▶ 重力にした場合も基本同じで、先のEinstein-Infeld-Hoffmann Lagrangianが出る

POST-NEWTONIAN, EFTアプローチ [Goldberger&Rothstein '06]

▶ すると実際、Newtonian potentialが出る

▶ 重力にした場合も基本同じで、先のEinstein-Infeld-Hoffmann Lagrangianが出る

POST-NEWTONIAN & POST-MINKOWSKIAN

post-Minkowskian理論 = G (Newtonian constant)に関する展開 [Bertotti '56, Bertotti&Plebanski '60] [Iwasaki '71] [Rosenblum '78, Westpfahl&Goller '79, Bel et al. '81, Damour&Deruelle '81]

- ▶ 実は先のpost-Newtonian理論はvとGのdouble expansionとも見れる
- ➤ Gのみの展開ができれば、連星系の速度に関して仮定を置かなくてよいので より好ましいのでは? → post-Minkowskian理論
- ► 重力で相互作用するmassiveな粒子の散乱をG展開で考え、散乱振幅から物理量を 読み取る [Damour '16] $S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + \frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 \right] \rightarrow \phi ? \uparrow \phi$
- ▶ 粒子はscattering stateだが、解析接続で適切にbound stateにmapできる e.g. [Kälin&Porto '18]

$$L = L_{\text{Newton}} + L_{\text{EIH}} = \left[\frac{1}{2}\sum_{a=1,2}m_a v^2 + \frac{Gm_1m_2}{r}\right] + \frac{1}{c^2}\left[\frac{1}{8}\sum_{a=1,2}m_a v_a^4 + \frac{Gm_1m_2}{2r}\left[3(v_1^2 + v_1^2) - 7(v_1 \cdot v_2) - \frac{(v_1 \cdot r)(v_2 \cdot r)}{r^2}\right] - \frac{G^2m_1m_2(m_1 + m_2)}{2r^2}\right]$$

- ▶ 実は先のpost-Newtonian理論はvとGのdouble expansionとも見れる
- ➤ Gのみの展開ができれば、連星系の速度に関して仮定を置かなくてよいので より好ましいのでは? → post-Minkowskian理論
- ▶ 重力で相互作用するmassiveな粒子の散乱をG展開で考え、散乱振幅から物理量を 読み取る [Damour'16] $S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + \frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 \right] \rightarrow \phi \gamma \gamma \phi$
- ▶ 粒子はscattering stateだが、解析接続で適切にbound stateにmapできる e.g. [Kälin&Porto '18]

post-Minkowskian理論 = G (Newtonian constant)に関する展開 [Bertotti '56, Bertotti&Plebanski '60] [Iwasaki '71] [Rosenblum '78, Westpfahl&Goller '79, Bel et al. '81, Damour&Deruelle '81]

- ▶ 実は先のpost-Newtonian理論はvとGのdouble expansionとも見れる
- ➤ Gのみの展開ができれば、連星系の速度に関して仮定を置かなくてよいので より好ましいのでは? → post-Minkowskian理論
- ► 重力で相互作用するmassiveな粒子の散乱をG展開で考え、散乱振幅から物理量を 読み取る [Damour '16] $S = \int d^4x \sqrt{-g} \left[\frac{1}{16\pi G} R + \frac{1}{2} (\partial \phi)^2 - \frac{m^2}{2} \phi^2 \right] \rightarrow \phi ? \uparrow \phi$
- ▶ 粒子はscattering stateだが、解析接続で適切にbound stateにmapできる e.g. [Kälin&Porto '18]

▶ さて、このアプローチにおいて、「ループ計算」が必要になる

(実は先のpost-NewtonianのEFTアプローチでも同様)

[Bjerrum-Bohr, Damgaard, Planté, Vanhove '22]

▶ 「古典」的な運動を考えているのになぜループ計算なのか?

ループ計算は「量子」的な効果ではないのか? 🤪 → No

Quantum Theory of Gravitation vs. Classical Theory*)	[Iwasaki '71]	Clas
Here we want to point out that there seems to exist an err	oneous belief*),**)	
that only tree diagrams contribute to the classical process. C	contrary to this be-	
lief, the quadratic term in k corresponds to fourth-order diagra	ms each of which	
contains a closed loop; it is a "radiative correction" term.	Since the quantum	Abstract
		The post-Minko

THE GENERATION OF GRAVITATIONAL WAVES. IV. BREMSSTRAHLUNG*†‡

[Thorne&Kovacs '78]

g) The Feynman-Diagram Approach

Any classical problem can be solved quantum-mechanically: and sometimes the quantum solution is easier than the classical. There is an extensive literature on the Feynman-diagram, quantum-mechanical treatment of gravitational bremsstrahlung radiation (e.g., Feynman 1961, 1963; Barker, Gupta, and Kaskas 1969; Barker and Gupta

Classical Gravity from Loop Amplitudes

[Bjerrum-Bohr, Damgaard, Planté, Vanhove '21]

[Bjerrum-Bohr, Damgaard, Planté, Vanhove '22]

Abstract	The SAGEX review on scattering amplitudes	
The post-Minkov	Chapter 13: Post-Minkowskian expansion	
received much a		
the computation	from scattering amplitudes	
cal context. In this brief review, we focus on the post-Minkowskian expansion		
as applied to the two-body problem in general relativity without spin, and we		
describe how relativistic quantum field theory can be used to greatly simplify		
analytical calculations based on the Einstein-Hilbert action. Subtleties related		

▶ ループが量子的であるという議論は、経路積分に作用が S/ħ で入ることに基づく e.g.[Iliopoulos, Itzykson, Martin '75]

 $\mathcal{Z} = \left[\mathcal{D}\phi e^{i\frac{S}{\hbar}} \rightarrow \text{vertex} lt \hbar^{-1}, \text{propagator} lt \hbar に比例 \rightarrow \mu - \mathcal{I} lt \hbar \mathfrak{Csuppress} \right]$

▶ しかし今考えるべき ħ 依存性はもう少し複雑である。e.g. [Bjerrum-Bohr, Damgaard, Planté, Vanhove '22]
 散乱する2つの粒子の運動量移行 q は連星間の距離 r に対応している。
 古典極限は距離 r を一定、すなわち q ではなく q/ħを一定にして ħ→0 とすべき。
 これにより上のカウンティングが崩れ、ループからも考慮すべき寄与が出る。

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a

POST-MINKOWSKIAN 積分: 部分積分恒等式 (IBP IDENTITIES)

▶ ループ計算においては、以下のようなファインマン積分が出る

$$\boxed{I_{a_1a_2;\,\alpha_1\alpha_2;\,i_1\cdots i_5}^{(4\dim)(3PM)}(q,\gamma) = \int_{l_1,l_2} \frac{\delta(l_1 \cdot u_{a_1})\delta(l_2 \cdot u_{a_2})}{A_{1,\bar{a}_1}^{\alpha_1}A_{2,\bar{a}_2}^{\alpha_2}D_1^{i_1}\cdots D_{i_5}^{i_5}}} \qquad \int_l = \int \frac{d^D l}{i\pi^{D/2}}, \quad D = 4 - 2\epsilon$$

(これは実際に3PMで現れるpost-Minkowskian積分 [Kaelin, Liu, Porto '20])

- ▶ しかし、全てが独立なわけではない。一部は部分積分によって関連付く $\frac{簡単な例}{0 = \int_{l} \frac{\partial}{\partial l^{\mu}} \left[\frac{l^{\mu}}{(l^{2})^{2}(l-q)^{2}} \right] = \dots = -3 \int_{l} \frac{1}{(l^{2})^{2}(l-q)^{2}} 2 \int_{l} \frac{1}{(l^{2})^{2}((l-q)^{2})^{2}}$
- ▶ よって、部分積分で関連付かない、独立な基底 (master integrals)のみ考慮する
 例 I_{i1}…i5</sub> = I^{(4dim)(3PM)}_{12;00;i1}…i5</sub> として、 I = {I₁₁₁₁₁, I₁₁₂₁₁, I₀₁₁₀₁, I₁₁₀₁₁, I₀₀₂₁₁, I₀₀₁₁₂, I₀₀₁₁₁} が独立基底

$$POST-N \qquad \overrightarrow{B \land O \square B \land A} \qquad \overrightarrow{B \land A} \qquad \overrightarrow{B \land A} \qquad \overrightarrow{B \land A} \qquad \overrightarrow{B \land A} \qquad \overrightarrow{A} \qquad \overrightarrow{A$$

(これは実際に3PMで現れるpost-Minkowskian積分 [Kaelin, Liu, Porto '20])

- ▶ しかし、全てが独立なわけではない。一部は部分積分によって関連付く $\frac{簡単な例}{0 = \int_{l} \frac{\partial}{\partial l^{\mu}} \left[\frac{l^{\mu}}{(l^{2})^{2}(l-q)^{2}} \right] = \dots = -3 \int_{l} \frac{1}{(l^{2})^{2}(l-q)^{2}} 2 \int_{l} \frac{1}{(l^{2})^{2}((l-q)^{2})^{2}}$
- ▶ よって、部分積分で関連付かない、独立な基底 (master integrals)のみ考慮する
 例 I_{i1}…i5</sub> = I^{(4dim)(3PM)}_{12;00;i1}…i5</sub> として、 I = {I₁₁₁₁₁, I₁₁₂₁₁, I₀₁₁₀₁, I₁₁₀₁₁, I₀₀₂₁₁, I₀₀₁₁₂, I₀₀₁₁₁} が独立基底

POST-MINKOWSKIAN 積分: 部分積分恒等式 (IBP IDENTITIES)

▶ ループ計算においては、以下のようなファインマン積分が出る

$$\boxed{I_{a_1a_2;\,\alpha_1\alpha_2;\,i_1\cdots i_5}^{(4\dim)(3PM)}(q,\gamma) = \int_{l_1,l_2} \frac{\delta(l_1 \cdot u_{a_1})\delta(l_2 \cdot u_{a_2})}{A_{1,\bar{a}_1}^{\alpha_1}A_{2,\bar{a}_2}^{\alpha_2}D_1^{i_1}\cdots D_{i_5}^{i_5}}} \qquad \int_l = \int \frac{d^D l}{i\pi^{D/2}}, \quad D = 4 - 2\epsilon$$

(これは実際に3PMで現れるpost-Minkowskian積分 [Kaelin, Liu, Porto '20])

- ▶ しかし、全てが独立なわけではない。一部は部分積分によって関連付く $\frac{簡単な例}{0 = \int_{l} \frac{\partial}{\partial l^{\mu}} \left[\frac{l^{\mu}}{(l^{2})^{2}(l-q)^{2}} \right] = \dots = -3 \int_{l} \frac{1}{(l^{2})^{2}(l-q)^{2}} 2 \int_{l} \frac{1}{(l^{2})^{2}((l-q)^{2})^{2}}$
- ▶ よって、部分積分で関連付かない、独立な基底 (master integrals)のみ考慮する
 例 I_{i1}…i5</sub> = I^{(4dim)(3PM)}_{12;00;i1}…i5</sub> として、 I = {I₁₁₁₁₁, I₁₁₂₁₁, I₀₁₁₀₁, I₁₁₀₁₁, I₀₀₂₁₁, I₀₀₁₁₂, I₀₀₁₁₁} が独立基底

POST-MINKOWSKIAN 積分:微分方程式

- ▶ 独立な基底を選んだとしよう。これらは外部パラメータを含む。
 - <u>例</u> 連星の一方から見た他方の相対論的 γ ファクター $\gamma = u_1 \cdot u_2$

▶ 外部パラメータを含んだまま解析的に積分を実行するのは難しい。そこで普通、 外部パラメータに関する偏微分方程式を立てる

$$\partial_x \vec{I}(x,\epsilon) = M(x,\epsilon)\vec{I}(x,\epsilon) \qquad \gamma = \frac{x^2 + 1}{2x}$$

► その際、次元に現れる
e がoverallにしか付かないような「良い基底」の取り方が あると指摘された [Henn '13]

$$\partial_x \vec{I}_{\text{new}}(x,\epsilon) = \epsilon M_{\text{new}}(x) \vec{I}_{\text{new}}(x,\epsilon)$$

POST-MINKOWSKIAN 積分: 境界条件

► さて、この微分方程式の境界条件は γ = 1 (連星がお互いに止まっている状況)

▶ 止まっているので時間方向 (~ エネルギー方向, l⁰ 方向)の積分は無視できて、 結局3次元の積分が境界条件として残る。これをstatic integralと言う。

$$\begin{split} I_{\pm;\alpha_{1},\alpha_{2};\nu_{1}\cdots\nu_{5}}^{(2\mathrm{PM})} &= e^{\epsilon\gamma_{E}} \int_{l} \frac{(q^{2})^{\nu_{1}+\nu_{2}+\alpha/2-d/2}}{(\pm l^{z})^{\alpha}[l^{2}]^{\nu_{1}}[(l-q)^{2}]^{\nu_{2}}} \\ I_{\pm\pm;\alpha_{1},\alpha_{2};\nu_{1}\cdots\nu_{5}}^{(3\mathrm{PM})} &= e^{2\epsilon\gamma_{E}} \int_{l_{1},l_{2}} \frac{(q^{2})^{\nu_{1}+\cdots\nu_{5}+(\alpha_{1}+\alpha_{2})/2-d}}{(\pm l_{1}^{z})^{\alpha_{1}}(\pm l_{2}^{z})^{\alpha_{2}}[l_{1}^{2}]^{\nu_{1}}[l_{2}^{2}]^{\nu_{2}}[(l_{12}-q)^{2}]^{\nu_{3}}[(l_{1}-q)^{2}]^{\nu_{4}}[(l_{2}-q)^{2}]^{\nu_{5}}} \\ (I^{(4\mathrm{PM})}, I^{(5\mathrm{PM})} \, \mathfrak{S} \, \Box \, \mathfrak{K}, \quad \int_{l} = \int \frac{d^{d}l}{\pi^{d/2}}, \quad l_{12} = l_{1} + l_{2}) \end{split}$$

POST-MINKOWSKIAN 積分: ファインマン表示

➤ ファインマン積分は、実は d = 3 - 2 € 次元積分を直接扱わなくても良い 簡単な例

$$I = \int \frac{d^d l}{\pi^{d/2}} \frac{(q^2)^{2-d/2}}{l^2(l-q)^2}$$

実数
$$x_1, x_2$$
の積分
 \tilde{l} を積分するとただの x_1, x_2 の関数
(専門的にはSymanzik polynomial \mathcal{U}, \mathcal{F} の関数
 $\frac{\mathcal{U}(x_1, x_2)^{n_u}}{\mathcal{F}(x_1, x_2)^{n_f}}$

▶ 以下、数値計算に投げるときも、この x₁, x₂, … の積分にして投げる

ここまでのまとめ:連星系の解析に多次元積分(ファインマン積分)が出てくる

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a
- ▶ 話は変わり、以下機械学習の話
- ▶ normalizing flowとは?:解析的に書くことが難しい分布関数を、解析的に書ける 分布関数からの(複数回の)変数変換で書く手法 ^[Dinh, Krueger, Bengio '15] [Rezende, Mohamed '15] [Dinh, Sohl-Dickstein, Bengio '16]

- 元の分布関数を $P_0(\vec{x}_0)$ とし、変数変換 $\vec{x}_K = c_K(c_{K-1}(\cdots c_1(\vec{x}_0))))$ を考えよう
- 変換後の分布関数は

- ここに現れるヤコビアンの計算量を抑える仕組みが "coupling transform"

coupling transform

coupling transform

- 変数変換 c(x) に着目する。まず、入力 x を2つに分けてみよう

$$\overrightarrow{x}_A = x_1, \dots, x_d, \quad \overrightarrow{x}_B = x_{d+1}, \dots, x_D$$

- このうち x_Aには何もせず、 x_Bの方に x_A依存の変換をかませてみよう

$$c(\vec{x}) = \begin{cases} \vec{x}_A' = \vec{x}_A \\ \\ \vec{x}_B' = C(\vec{x}_B; m(\vec{x}_A)) \end{cases}$$

- さて、ヤコビアンはどうなるだろうか?

$$\left|\frac{\partial c(\vec{x})}{\partial \vec{x}}\right|^{-1} = \left|\begin{pmatrix}\vec{1} & \vec{0} \\ \vec{0} & \vec{0} \\ \vec{0} & \vec{0} &$$

- そこで、Cには解析的に書ける簡単な関数を取り、mをneural networkで訓練する

coupling transform

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a

▶ Monte-Carlo積分におけるimportance sampling

- 積分
$$I = \int_{\Omega} f(x) dx$$
 を数値的に評価したいとする

- ナイーブなMonte-Carloサンプリングだと、エラーは

$$I \simeq \frac{V}{N} \sum_{i=1}^{N} f(x_i) \equiv V \langle f \rangle_x \quad \Rightarrow \quad \sigma_I \simeq V \sqrt{\frac{\langle f^2 \rangle_x - \langle f \rangle_x^2}{N-1}}$$

- 変数変換により dG(x) = g(x)dx となる G(x) を取って同じことをすると、

$$I = \int_{\Omega} \frac{f(x)}{g(x)} \, dG(x) \simeq V \langle f/g \rangle_G \quad \Rightarrow \quad \sigma_I \simeq V \sqrt{\frac{\langle (f/g)^2 \rangle_G - \langle f/g \rangle_G^2}{N-1}}$$

- もし g(x) = f(x) に取れればエラーは0だが、現実には我々は f(x) を知らない。 そこで、 $g(x) = \frac{dG(x)}{dx}$ が f(x) に「よく似る」ようにG(x)を構成する。

➤ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

- そこでnormalizing flowが使える。

➤ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ Monte-Carlo積分におけるimportance sampling

- 多変数の場合、
$$g(x) = \frac{dG(x)}{dx}$$
 はヤコビアン $g(\vec{x}) = \left| \frac{\partial \vec{G}(\vec{x})}{\partial \vec{x}} \right|$ となるため、

変換 $\vec{x} \rightarrow \vec{G}(\vec{x})$ のヤコビアンが簡単に計算できることが重要。

▶ i-flow: normalizing flowを用いたMonte-Carlo積分パッケージ。言語はpython。

- ▶ layer数: 被積分関数のcorrelationを捉えるのに必要な最小数が自動で設定される (積分次元 Dに対し layer数 = D(D < 4), Floor $[\log_2 D]$ ($D \ge 5$)、Sec.IIIA参照)
- ▶ neural network: デフォルトで loss function = exponential, optimizer = ADAM
- ▶ Cは piecewise linear, piecewise quadratic, piecewise rational quadratic spline から選べる

数値計算の必要性

- ▶「概要」で述べたように、post-Minkowskianの高いオーダーになると、フルの 解析解が手に入らない可能性が大きい
- ▶ しかし、 ϵ 展開の各係数を数値的に知れれば、PSLQアルゴリズムにより解析的な 表式を特定できるかもしれない

PSLQ Algorithm [Bailey&Ferguson '91] [Bailey&Broadhurst '01]
An algorithm which can be used to find integer relations between real numbers
$$x_1, ..., x_n$$
 such that
 $a_1 x_1 + a_2 x_2 + ... + a_n x_n = 0$,

[Wolfram mathworld]

► 例えば $I = \frac{c_2}{\epsilon^2} + \frac{c_1}{\epsilon} + c_0 \epsilon^0 + \cdots$ で、 $c_0 = 38.5749 \cdots$ と数値的にわかっていて、かつ $c_0 = a_1 \pi^2 + a_2 \pi \ln 2 + a_3 \ln^2 2$ と知っている場合、 $(a_1, a_2, a_3) = (3, 5, -4)$ と当ててくれる

FindIntegerNullVector[{Pi^2,Pi*Log[2],Log[2]^2,38.574931599113280810}]
{-3, -5, 4, 1}

セクター分解

▶ さて、ファインマン積分をi-flowに投げるのだが、実はこの積分は結構凶悪

先程の例
$$I = \int \frac{d^d l}{\pi^{d/2}} \frac{(q^2)^{2-d/2}}{l^2(l-q)^2} = \cdots \sim \int_0^\infty dx_1 \int_0^\infty dx_2 \,\,\delta(x_1+x_2-1) \,\,\frac{\mathcal{U}(x_1,x_2)^{n_u}}{\mathcal{F}(x_1,x_2)^{n_f}}$$

とう凶悪なのか? [Heinrich '08]

$$\underbrace{M} \qquad I = \int_{0}^{1} dx \int_{0}^{1} dy \underbrace{x^{-1/2} y^{1/2}}_{x+(1-x)y} \qquad \begin{cases} x \ \text{kbordle constraints} \\ y \ \text{kbordle constrai$$

➤ そこでセクター分解 (sector decomposition) をする

 (1) 1 = Θ(x - y) + Θ(y - x) を掛け、① x > y セクターと② x < y セクターに分解
 (2) それぞれについて、① y = xt ② x = yt と変換すると、singularity overlapを除ける

$$I = \int_0^1 dx \, \int_0^1 dt \, \frac{t^{1/2}}{1 + (1 - x)t} + \, \int_0^1 dy \, \int_0^1 dt \, \frac{t^{-1/2}}{1 + (1 - y)t}$$

セクター分解

▶ さて、ファインマン積分をi-flowに投げるのだが、実はこの積分は結構凶悪

▶ そこでセクター分解 (sector decomposition) をする

(1) $1 = \Theta(x - y) + \Theta(y - x)$ を掛け、 ① x > y セクターと ② x < y セクターに分解(2) それぞれについて、① y = xt ② x = ytと変換すると、singularity overlapを除ける

$$I = \int_{0}^{1} dx \int_{0}^{1} dt \frac{t^{1/2}}{1 + (1 - x)t} + \int_{0}^{1} dy \int_{0}^{1} dt \frac{t^{-1/2}}{1 + (1 - y)t}$$

▶ まとめると、以下のようなパイプラインを構成する

- ▶ 比較対象として、最後の でスタンダードなMonte-Carloアルゴリズムである VEGASを用いた場合も用意する。どのような違いが予想されるか?
 - VEGASも分布関数をアップデートするが、その際、被積分関数のfactorizationを 仮定している: $f(x_1, \dots, x_D) = f(x_1) \cdots f(x_D)$
 - i-flowの方が被積分関数のcorrelationを捉える能力が高いため、差が出るのでは?

トークの構成

物理パート

1. アインシュタイン方程式とは?

2. post-Newtonian理論とは? post-Minkowskian理論とは?

3. post-Minkowskian積分計算のパイプライン:部分積分,微分方程式,境界条件

機械学習パート

1. normalizing flowとは?

2. normalizing flowを用いた数値積分パッケージ "i-flow"

3. i-flowのpost-Minkowskian積分への適用

<u>要約</u>+a

I-FLOWのPOST-MINKOWSKIAN積分への適用

▶ 試すファインマン積分は以下の通り: $\int_{l} = \int \frac{d^{d}l}{\pi^{d/2}}$, $d = 3 - 2\epsilon$, $l_{ij} = l_i + l_j$, -i0 implicit <u>3PM</u> (2-loop)

$$I_{\pm\pm;\alpha_1,\alpha_2;\nu_1\cdots\nu_5}^{(3PM)} = e^{2\epsilon\gamma_E} \int_{l_1,l_2} \frac{(q^2)^{\nu_1+\cdots\nu_5+(\alpha_1+\alpha_2)/2-d}}{[\pm l_1^z]^{\alpha_1}[\pm l_2^z]^{\alpha_2}[l_1^2]^{\nu_1}[l_2^2]^{\nu_2}[(l_{12}-q)^2]^{\nu_3}[(l_1-q)^2]^{\nu_4}[(l_2-q)^2]^{\nu_5}}$$

<u>4PM</u> (3-loop)

$$\begin{split} I_{B0}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1, l_2, l_3} \frac{(q^2)^{4-3d/2}}{[l_1^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{B1(1)}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1, l_2, l_3} \frac{(q^2)^{9/2 - 3d/2}}{[\pm l_3^2][l_1^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{B1(2)}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1, l_2, l_3} \frac{(q^2)^{9/2 - 3d/2}}{[\pm l_{23}^2][l_1^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{B2(1)\pm}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1, l_2, l_3} \frac{(q^2)^{5-3d/2}}{[\pm l_1^2][\pm l_2^2][l_1^2][l_2^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{B2(2)\pm}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1, l_2, l_3} \frac{(q^2)^{5-3d/2}}{[\pm l_1^2][\pm l_2^2][l_1^2][l_2^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ \end{split}$$

$$\begin{split} I_{B3(1)\pm\pm}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1,l_2,l_3} \frac{(q^2)^{11-3d/2}}{[l_1^z][\pm l_1^z][\mp l_3^z][l_1^2][l_2^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{B3(2)\pm\pm}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1,l_2,l_3} \frac{(q^2)^{11-3d/2}}{[l_1^z][\pm l_2^z][\mp l_3^z][l_1^2][l_2^2][l_2^2][l_3^2][(l_{123} - q)^2]} \\ I_{C0}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1,l_2,l_3} \frac{(q^2)^{5-3d/2}}{[l_1^2][l_2^2][l_3^2][(l_1 - q)^2][(l_{23} - q)^2]} \\ I_{D0}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1,l_2,l_3} \frac{(q^2)^{5-3d/2}}{[l_1^2][l_2^2][l_3^2][(l_{13} - q)^2][(l_{23} - q)^2]} \\ I_{D1}^{(4\text{PM})} &= e^{3\epsilon\gamma_E} \int_{l_1,l_2,l_3} \frac{(q^2)^{11/2-3d/2}}{[l_1^2][l_2^2][l_3^2][(l_{13} - q)^2][(l_{23} - q)^2]} \end{split}$$

I-FLOWのPOST-MINKOWSKIAN積分への適用

▶ 試すファインマン積分は以下の通り: $\int_{l} = \int \frac{d^{d}l}{\pi^{d/2}}, d = 3 - 2\epsilon, l_{ij} = l_i + l_j, -i0$ implicit <u>5PM</u> (4-loop)

$$\begin{split} I_{M0}^{(\text{5PM})} &= e^{4\epsilon\gamma_E} \int_{l_1, l_2, l_3, l_4} \frac{(q^2)^{5-2d}}{[l_1^2][l_2^$$

3PM

precision goal 10^{-3}

burn-inプロセス: i-flowについて、g(x)が f(x)に十分近付く前に蓄えた sampling pointが

積分の最終結果にバイアスをもたらす傾向があったので、目標精度の半分に

達した時点でsampling pointを一旦捨てた (訓練したneural networkの構成はそのまま)

33 / 37 Ryusuke Jinno (RESCEU, UTokyo) "Machine learning post-Minkowskian integrals"

3PM

		Dim	VECAS	i flor	VECAS	i flou
	$\epsilon\text{-}\mathrm{order}$		$\sigma = 10^{-3}$	$(\sigma = 10^{-3})$	$\sigma = 10^{-4}$	$(\sigma = 10^{-4})$
	1	2	135,000	614 400	2 475 000	1 830 012
K _{00;00111}	-1		220,000	810 200	2 475 000	2 21 4 2 40
	1	2	220 000	819 200 811 008	6 270 000	
	1	2	270 000	811 008	12 125 000	2 909 000
$K_{00;11011}$	0	3	270 000	(18 240	13 135 000	8 0 3 6 3 5 2
	1	3	325 000	839680	187000000	8 282 112
	2	3	760 000	937 984	40 635 000	8 740 864
$m{K}_{01;00111}^{(\pm)}$	-1	2	135000	454656	3 145 000	1146880
	0	3	3895000	3641344	363 850 000	279408640
	1	3	30 520 000	26243072	-	-
$egin{array}{c} m{K}^{(\pm)}_{01;11011} \end{array}$	-1	3	450 000	757 760	36 900 000	24240128
	0	4	13870000	11059200	1 312 245 000	946786304
	1	4	9145000	7147520	865 825 000	172482560
$m{K}_{01;10110}^{(\pm)}$	-1	2	70 000	208 896	2 475 000	1019904
	0	3	220 000	450560	12 420 000	2867200
	1	3	385000	528 384	28 350 000	2887680
$m{K}_{11;00111}^{(+-)}$	-2	2	70 000	245 760	1 885 000	1130496
	-1	4	1150000	1306624	108675000	83521536
	0	4	125995000	102195200	-	-
$m{K}_{11;00111}^{(++)}$	-2	2	70 000	196 608	1 375 000	1011712
	-1	4	450000	536576	37510000	24129536
	0	4	38745000	35098624		-
$m{K}_{11;11011}^{(++)}$	-2	3	135000	249 856	11 385 000	10633216
	-1	5	1 1 5 0 0 0 0	1138688	115 020 000	93896704
	0	5	8260000	7741440	802 300 000	713129984
$egin{array}{c} m{K}^{(\pm)}_{02;10110} \end{array}$	-1	2	100 000	385 024	3 145 000	1048576
	0	3	850 000	1085440	76995000	61423616
	1	3	5 400 000	5062656	505 120 000	388 235 264

4PM

	ϵ -order	Dim	$VEGAS (\sigma = 10^{-3})$	$\begin{aligned} \mathrm{i-flow} \\ (\sigma = 10^{-3}) \end{aligned}$	$VEGAS (\sigma = 10^{-4})$	$\begin{array}{c} \mathrm{i-flow} \\ (\sigma = 10^{-4}) \end{array}$
	0	3	175 000	659456	3895000	1507328
B_0	1	3	220 000	782 336	5 635 000	2072576
	2	3	325000	888 832	8 260 000	2625536
	-2	2	135 000	610 304	2 320 000	1409024
B_1	-1	4	270 000	602112	11725000	2445312
	0	4	760 000	1024000	51 475 000	32100352
	-1	3	175 000	487 424	5 635 000	1536000
B_2	0	4	270 000	655360	11 385 000	2076672
	1	4	385000	667648	16 195 000	2539520
	-2	3	135000	442 368	4 300 000	2441216
B_3^+	-1	5	1750000	1777664	165760000	118611968
	0	5	4945000	4096000	47 197 000	308641792
	-2	3	175000	528 384	4 300 000	2146304
B_3^-	-1	5	1620000	1757184	154375000	112689152
	0	5	-	-		-
	-2	3	100 000	405504	2800000	2142208
B_{4}^{+}	-1	5	595000	1007616	47950000	51929088
	0	5	4300000	4689920	425 385 000	363270144
	-2	3	135000	438 272	3 700 000	2392064
B_4^-	-1	5	325000	569344	26775000	16392192
	0	5	32 200 000	28790784	-	-
	-3	3	100 000	376832	4725000	1892352
B_{5}^{++}	-2	6	1495000	1650688	141 010 000	115605504
	-1	6	59670000	49348608		-
	-1	3	220 000	626688	5875000	2322432
C_0	0	4	325000	774144	14625000	5808128
	1	4	595000	831488	26775000	8294400
	0	4	270000	684032	10395000	4870144
D_0	1	4	385000	790528	14 245 000	4898816
	2	4	595 000	905216	23 760 000	5582848
	-1	4	520000	$8\overline{27392}$	39370000	28872704
$ D_1$	0	5	5170000	4710400	485 095 000	331 739 136
	1	5	7975000	6582272	714 220 000	463 904 768

VEGAS i-flow VEGAS i-flow Dim $\epsilon\text{-}\mathrm{order}$ $(\sigma = 10^{-4})$ $(\sigma = 10^{-3})$ $(\sigma = 10^{-3})$ $(\sigma = 10^{-4})$ $\mathbf{2\,473\,984}$ $5\,875\,000$ -1 $220\,000$ $839\,680$ 4 $2\,252\,800$ 0 4 $325\,000$ $741\,376$ $7\,695\,000$ M_0 1 4 $385\,000$ $970\,752$ $10\,075\,000$ $2\,813\,952$ -1 5 $4\,725\,000$ $5\,513\,216$ $467\,635\,000$ $469\,925\,888$ M_1 0 5 $3\,700\,000$ $4\,268\,032$ $358\,150\,000$ $348\,610\,560$ 1 5 $2\,170\,000$ $2\,498\,560$ $203\,770\,000$ $176\,631\,808$ 3 $557\,056$ $4\,095\,000$ -3 $175\,000$ $1\,503\,232$ M_2^- -2 $\mathbf{6}$ $2\,320\,000$ $2\,105\,344$ $213\,885\,000$ $132\,751\,360$ -1 6 $119\,350\,000$ $96\,231\,424$ _ 3 $175\,000$ $581\,632$ $1\,839\,104$ -3 $4\,095\,000$ M_2^+ $248\,845\,000$ -2 6 $2\,635\,000$ $2\,314\,240$ $151\,486\,464$ -1 6 $27\,295\,000$ $22\,687\,744$ -3 $\mathbf{3}$ $175\,000$ $577\,536$ $4\,095\,000$ $1\,413\,120$ M_3^+ -2 6 $2\,970\,000$ $2\,588\,672$ $298\,420\,000$ $183\,275\,520$ -1 $\mathbf{6}$ $28\,350\,000$ $24\,297\,472$ -3 3 $175\,000$ $561\,152$ $5\,170\,000$ $1\,470\,464$ M_3^- -2 $1\,048\,576$ $86\,950\,000$ $44\,961\,792$ 6 $1\,045\,000$ -1 6 $23\,760\,000$ $20\,635\,648$ $175\,000$ $471\,040$ $7\,420\,000$ $2\,490\,368$ -4 4 M_4^{+++} -3 8 $1\,885\,000$ $1\,835\,008$ $181\,570\,000$ $115\,736\,576$ -2 8 $18\,270\,000$ $13\,864\,960$

5PM

precision goal 10^{-4}

<u>異なるスケーリングについての解釈</u>

- i-flowの急なカーブは、おそらく積分変数間の非自明なcorrelationを学んでいることに起因する。
- しかし、一旦 correlation を学び切ると $\propto 1/\sqrt{N}$ に近いスケーリングに近付いていく傾向が見られた。
- それでも、スケーリングに乗った後の精度はVEGASより良い傾向が見られた。これはおそらくcorrelationを 学んだことによる効果だと思われる。
- 最終的にこの「スケーリングに乗った後の精度の差」が重要で、積分の複雑さ・目標精度をより上げた場合、 この差がさらに開くのでは?
- 36 / 37 Ryusuke Jinno (RESCEU, UTokyo) "Machine learning post-Minkowskian integrals"

- ➤ LIGO/Virgoによる重力波初観測以来、連星系の運動をpost-Newtonian理論 あるいはpost-Minkowskian理論で解析的に求める手法が発達している。
- > PSLQによる係数の解析的同定を念頭に置いて、我々はpost-Minkowskian理論に 現れるファインマン積分をMonte-Carlo積分によって数値評価した。 その際、機械学習を用いたアルゴリズムであるnormalizing flowを用い、 従来のVEGASアルゴリズムと比較した。
- ▶ 大まかな傾向として、積分の複雑さ・目標精度が上がるほど前者のアルゴリズムが良い傾向が見られた。これはおそらくneural networkが被積分関数のcorrelationを 学んでいることによる差異だと思われる。

▶ 以下雑談。ファインマン積分を計算していると、次のような恒等式が見つかる:

恒等式1

$$4F_{3}(\frac{1}{2}, 1, a - 1, a - 1; \frac{3}{2}, 3 - a, ?; 1) - \frac{\sin(\pi a)}{6} \frac{\Gamma_{3-a}\Gamma_{a-3/2}^{3}\Gamma_{?}}{\Gamma_{a-1}^{2}\Gamma_{3a-9/2}}$$
$$= \frac{2^{4a-7}}{\pi} \frac{\Gamma_{3-a}\Gamma_{?}^{2}}{\Gamma_{4a-5}} \frac{\Gamma_{3a-4}}{3F_{2}} (a - \frac{3}{2}, 2a - 3, ?; a - \frac{1}{2}, 4a - 6; 1).$$

$$\begin{aligned} &\frac{2\csc(\pi a)\,\Gamma_{a-\nu}}{\Gamma_{3-a}} \underbrace{_{4}F_{3}}(\frac{1}{2},1,a-1,a-\nu;\frac{3}{2},\ ?\ ,3a-3-\nu;1) \\ &-\frac{\csc(\pi(a-\nu))\,\Gamma_{a-1}}{\Gamma_{2-a+\nu}} \underbrace{_{4}F_{3}}(\frac{1}{2},1,a-1,a-1;\frac{3}{2},\ ?\ ,3a-3-\nu;1) \\ &= -\frac{2^{2a-3}\pi^{1/2}\csc(\pi a)\,\csc(\pi(2a-\nu))\,\Gamma_{a-3/2}\,\Gamma_{3a-3-\nu}}{(3-2a)\,\Gamma_{4a-5-\nu}\,\Gamma_{?}} \\ &\times\underbrace{_{3}F_{2}}(a-\frac{3}{2},2a-3,\ ?\ ;a-\frac{1}{2},4a-5-\nu;1) \\ &+\frac{2^{5-4a+2\nu}\pi^{3/2}\csc(\pi(a-\nu))\csc(\ ?\)\,\Gamma_{3a-3-\nu}}{(1-2a+2\nu)\,\Gamma_{a-1}\,\Gamma_{2a-3/2-\nu}\,\Gamma_{3-2a+\nu}} \\ &\times\underbrace{_{3}F_{2}}(a-\frac{1}{2}-\nu,2a-2-\nu,2a-2-\nu;\frac{1}{2}+a-\nu,\ ?\ ;1) \\ &+\frac{1}{2}\frac{\Gamma_{a-3/2}^{2}\,\Gamma_{?}}{\Gamma_{a-1}\Gamma_{?}}. \end{aligned}$$

► そしてどうやらhypergeometric functionの本にも載っていない...

▶ そもそもこのような関係式が 7F6 で終わっているようなのだが、そんなことは

あり得るのだろうか…?実はまだ人類が知らないだけでいっぱい転がってる?

▶ そしてどうやらhypergeometric functionの本にも載っていない...

16 Whipple
$${}_{3}F_{2}\left(\begin{array}{c}a, 1-a, c\\e, 1+2c-e\end{array}\middle|1\right) = \frac{\pi 2^{1-2c}\Gamma(e)\Gamma(1+2c-e)}{\Gamma(\frac{a+e}{2})\Gamma(\frac{a+1+2c-e}{2})\Gamma(\frac{1-a+e}{2})\Gamma(\frac{2+2c-a-e}{2})}$$

26 Dougall ${}_{7}F_{6}\left(\begin{array}{c}a, 1+a/2, b, c, d, 1+2a-b-c-d+n, -n\\a/2, 1+a-b, 1+a-c, 1+a-d, b+c+d-a-n, 1+a+n\end{matrix}\middle|1\right)$
 $= \frac{(1+a)_{n}(1+a-b-c)_{n}(1+a-b-d)_{n}(1+a-c-d)_{n}}{(1+a-b)_{n}(1+a-c)_{n}(1+a-c)_{n}(1+a-c-d)_{n}}$
25 Dougall ${}_{5}F_{4}\left(\begin{array}{c}a, 1+a/2, c, d, e\\a/2, 1+a-c, 1+a-d, 1+a-e\end{matrix}\middle|1\right) = \frac{(1+a)_{-e}(1+a-c-d)_{-e}}{(1+a-c)_{-e}(1+a-d)_{-e}}$
27 $= \frac{\Gamma(1+a-c)\Gamma(1+a-d)\Gamma(1+a-e)\Gamma(1+a-c-d-e)}{\Gamma(1+a)\Gamma(1+a-c-d)}$
28 Whipple ${}_{4}F_{3}\left(\begin{array}{c}a, 1+a/2, d, e\\a/2, 1+a-d, 1+a-e\end{matrix}\middle|-1\right) = \frac{(1+a)_{-e}}{(1+a-d)_{-e}} = \frac{\Gamma(1+a-d)\Gamma(1+a-e)}{\Gamma(1+a-d-e)}$

➤ そもそもこのような関係式が 7F6で終わっているようなのだが、そんなことはあり得るのだろうか…?実はまだ人類が知らないだけでいっぱい転がってる?

- ▶ 何とかして機械学習でシステマティックに見つけられないか? 🤥
- ▶ 明らかな問題: 「式変形」は知られた関係式を使って元の式を簡約化すれば良いが、

「新しい関係式の発見」は知られた式を使ってはいけない…どうする?

▶ Matthiew Schwartzが最近面白いことを言っているらしい。

polylog (hypergeometricと似たようなもの) を機械学習で簡約化する論文なのだが、 知られた式を使って簡約化するのではなく、例えば「フランス語 → 英語」のような 翻訳のスキームを使って簡約化しているらしい。

▶ 確かに翻訳は、既知の対応を逐一適用するというよりは、翻訳先の言語に

「存在しそうな」表現を推測する行為である。実際この論文でも、翻訳機は いくつかの簡約化を提案し、最終的に人間が正しさをチェックしている

 ▶ 似たような感じで、最終的にhypergeometric間の関係式を提案してくれる翻訳機を 作れないか?とりあえず彼らのと同じNNを組んで、hypergeometricに適用すれば 第一段階になるのでは? ← ^{セミナーで直接会って「hypergeometricでもできる?」って聞いたら} 「できそう」って言ってた

/ 37 Ryusuke Jinno (RESCEU, UTokyo) "Machine learning post-Minkowskian integrals"
LINEAR PROPAGATOR & DELTA FUNCTION

► linear propagator $\frac{1}{(p-q)^2 - m^2} \simeq -\frac{1}{2p \cdot q}$

本質的にHQEFT (heavy quark EFT) と同じ

[Hussain&Thompson '95]

We do not need, however, to get into any highly abstract formal considerations in order to exhibit the features mentioned above within the context of QCD [19]. Let us simply take the $m_Q \to \infty$ limit of the lowest order propagator and connected three point function for the heavy quark near its 'mass-shell', that is with $p_Q = m_Q v + k$, where v is the velocity of the heavy hadron and the components of k are bounded by Λ_{QCD} . The first of these behaves as, $i = \frac{(1+\psi)}{1+\psi} + O(1/v_{-1})$ (1)

$$\frac{v}{\not p_Q - m_Q} = i \frac{(1 + \varphi)}{2v \cdot k} + O(k/m_Q) \,. \tag{1}$$

delta function

$$\frac{dp_{1\mu}}{d\sigma_1} = \frac{1}{2} \partial_{\mu} g_{\alpha\beta}(x_1) p_1^{\alpha} p_1^{\beta} \qquad \Delta p_{1\mu} = \int_{-\infty}^{+\infty} d\sigma_1 \frac{1}{2} p_1^{\alpha} p_1^{\beta} \partial_{\mu} h_{\alpha\beta}(x_1) \\
\Delta p_{1\mu} = 8\pi G \int \frac{d^4 k}{(2\pi)^4} i k_{\mu} p_1^{\alpha} p_1^{\beta} \frac{P_{\alpha\beta;\alpha'\beta'}}{k^2} p_2^{\alpha'} p_2^{\beta'} \\
\times \int d\sigma_1 \int d\sigma_2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))} \cdot \frac{x_1^{\mu}(\sigma_1) - x_1^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) = x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_1^{\mu} \sigma_1; x_2^{\mu}(\sigma_2) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y_2^{\mu} \sigma_2}{(2\pi)^2 e^{ik.(x_1(\sigma_1) - x_2(\sigma_2))}} \cdot \frac{x_1^{\mu}(\sigma_1) - x_2^{\mu}(\sigma_1) + y$$

/ 37 Ryusuke Jinno (RESCEU, UTokyo) "Machine learning post-Minkowskian integrals"

POST-MINKOWSKIAN積分

▶ ダイアグラムのトポロジー

微分方程式の例 [Henn '13]

$$\partial_x f = \epsilon \left[\frac{a}{x} + \frac{b}{1+x} \right] f \,,$$

-2

-1

-2

-4 - 12

-1 -1

 $-2 \ 0$

$$\begin{split} & f_1 = -\epsilon^2 \, (-s)^{2\epsilon} t \, I_{0,2,0,0,0,0,1,2} \,, & (9) \\ & f_2 = \epsilon^2 \, (-s)^{1+2\epsilon} \, I_{0,0,2,0,1,0,0,0,2} \,, & (10) \\ & f_3 = \epsilon^3 \, (-s)^{1+2\epsilon} \, I_{0,1,0,0,1,0,1,0,2} \,, & (11) \\ & f_4 = -\epsilon^2 \, (-s)^{2+2\epsilon} \, I_{2,0,1,0,2,0,1,0,0} \,, & (12) \\ & f_5 = \epsilon^3 \, (-s)^{1+2\epsilon} t \, I_{1,1,1,0,0,0,0,1,2} \,, & (13) \\ & f_6 = -\epsilon^4 \, (-s)^{2+2\epsilon} \, t \, I_{1,1,1,0,1,0,0,1,1} \,, & (14) \\ & f_7 = -\epsilon^4 \, (-s)^{2+2\epsilon} \, t \, I_{1,1,1,0,1,0,1,1,1} \,, & (15) \\ & f_8 = -\epsilon^4 \, (-s)^{2+2\epsilon} \, I_{1,1,1,0,1,-1,1,1,1} \,, & (16) \end{split} \\ \hline \\ & I_{a_1,\dots,a_9} := e^{2\epsilon\gamma_E} \int \frac{d^D k_1 d^D k_2}{(i\pi^{D/2})^2} \, \prod_{m=1}^9 (P(q_m))^{a_m} \,, & (8) \\ & \text{with the propagator } P(q) := 1/(-q^2) \,, \text{ and the set of possible momenta } q_m, \text{ corresponding to } m = 1, \dots 9, \text{ respectively, is } k_1, k_1 + p_{12}, k_1 + p_{123}, k_2, k_2 + p_{12}, k_2 + p_{123}, k_1 - k_2, \text{ where } p_{12} = p_1 + p_2 \text{ and } p_{123} = p_1 + p_2 + p_3. \\ & \text{We have } p_i^2 = 0 \text{ and } \sum_{i=1}^{4} p_i = 0. \text{ The results depend on the Mandelstam variables } s = 2p_1 \cdot p_2 \text{ and } t = 2p_2 \cdot p_3. \\ \hline \end{aligned}$$

Ryusuke Jinno (RESCEU, UTokyo) "Machine learning post-Minkowskian integrals" / 37

目標精度に応じた評価回数の変化

SUMMERTIME

Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method

Roman N. Lee^a, Kirill T. Mingulov^{a,b}

^aBudker Institute of Nuclear Physics, 630090, Novosibirsk ^bNovosibirsk State University, 630090, Novosibirsk

Abstract

We introduce the *Mathematica* package SummerTime for arbitrary-precision computation of sums appearing in the results of DRA method. So far these results include the following families of the integrals: 3-loop onshell massless vertices, 3-loop onshell mass operator type integrals, 4-loop QED-type tadpoles, 4-loop massless propagators [1, 2, 3, 4]. The package can be used for high-precision numerical computation of the expansion coefficients of the integrals from the above families around arbitrary space-time dimension. In addition, this package can also be used for calculation of multiple zeta values, harmonic polylogarithms and other transcendental numbers expressed in terms of nested sums with factorized summand.

➤ フルの結果を解析的に求めるのではなく、 ϵ 展開の係数に再帰方程式を適用して 解析的に簡約化するアルゴリズム (確認中だが、higher loopまで拡張できるよう)