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PINNの⾮線形シュレディンガー⽅程式への応⽤



PINN(Physics-Informed Neural Network)とは?

損失関数に物理的な制約（初期状態，境界条件，微分⽅程式など）を組み
込み学習させ，物理的に妥当な条件下で系の性質を調べる⼿法.

従来のニューラルネットワークと違い数値解などの学習データが必要ない.

物理的な制約を組み込んでいるため合理的な結果を得る可能性が⾼い.

Raissi, et.al. (2017)
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PINN(Physics-Informed Neural Network) for PDE
Raissi, et.al. (2017)

𝑢% 𝑡, 𝑥 : DNNの出⼒
ℒ!" 𝜃 : 初期状態の損失関数
ℒ#" 𝜃 : 境界条件の損失関数
ℒ$ 𝜃 : 偏微分⽅程式の損失関数
𝑥!"! !&'

(!" : 初期状態のトレーニングデータ
𝑡#"! , 𝑥#"! !&'

(#" : 境界条件のトレーニングデータ
𝑡$! , 𝑥$! !&'

($ : ⽅程式のトレーニングデータ



∂nu(x,t)
∂xn は u(x, t)の n階微分を表す. 2, 3番目の式は x = 0, lでのディリクレ境界条件である. 4

番目の式は初期条件で t = 0で g(x, 0)である.

PINNの目的はこの偏微分方程式の解 u(x, t)を Deep Neural Network(DNN)を用いて予測するこ
とである. この問題を解くための典型的な PINNのフレームワークは以下の図のようになる.

図 3.7: PINNのフレームワーク

PINNの学習データは主に偏微分方程式、境界条件、および初期条件の 3つの要素から構成され
る. 偏微分方程式に対する入力データ (xf , tf )は, 解を求めたい領域内からランダムにサンプリン
グされる. 境界条件に対する入力データ (xbc, tbc) は領域の境界上からランダムにサンプリングさ
れる. 初期条件に対する入力データ (xini, 0) は t = 0 での x 座標をランダムにサンプリングされ
る. この, (xf , tf ), (xbc, tbc), (xini, 0)を図のような完全に接続されたDNNに入力しそれぞれの予測
値 upred(x

f
i , t

f
i , ; θ), upred(xbc

i , tbci , ; θ), upred(xini
i , 0, ; θ)を得ます. ここで, θ は重みW , バイアス b

を含む DNNのトレーニングパラメータである. これらの予想値は平均 2乗誤差の損失関数に組み
込まれ, 以下のように表現される.
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・調和振動⼦のシュレディンガー⽅程式
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1. 調和振動⼦の重ね合わせ状態の時間発展



表 4.1: DNNの構造層 ニューロン数 活性化関数 重みの初期値
入力層 2

1層 40 SiLU Xavier

2層 40 SiLU Xavier

3層 40 SiLU Xavier

4層 40 SiLU Xavier

出力層 2 Xavier

最適化手法 Adam

学習係数 0.001

β1,β2 0.9, 0.999

表 4.2: 最適化手法と設定

学習データ (領域内部, 境界, 初期)　 3000, 300, 300

学習回数 10000

学習時間 163s

損失関数の最終値 1.8567e-04

表 4.3: 学習のデータと結果

図 4.2: 損失関数の推移

31

layer ニューロン
数

活性化関数 Initial 
weight

input 2
1st 40 SiLU Xavier
2nd 40 SiLU Xavier
3rd 40 SiLU Xavier
4th 40 SiLU Xavier
output 2 Xavier

• 最適化⼿法: Adam optimizer
• η=0.001, β1 = 0.9, β2 =0.999 
• 学習データ数: i.c. 300,  b.c. 300,  inside 3000
• 学習回数: 10000
• 学習時間: 163s
• 損失関数の最終値: 1.8567e-04

1. 調和振動⼦の重ね合わせ状態の時間発展



Exact       PINN Absolute error

境界を除いて⾼い⼀致！

Cf.) Shah, Stiller, Hoffmann, Cangi (2022)1. 調和振動⼦の重ね合わせ状態の時間発展



Exact       PINN Absolute error

Cf.) Shah, Stiller, Hoffmann, Cangi (2022)1. 調和振動⼦の重ね合わせ状態の時間発展

境界を除いて⾼い⼀致！



・時間依存Gross-Pitaevskii⽅程式

・ポテンシャル

・初期状態

𝑉(𝑥, 𝑡)

4.2 非線形シュレーディンガー方程式
次のような周期境界条件の下での非線形シュレーディンガー方程式を考える.

i
∂ψ(x, t)

∂t
+

1

2

∂2ψ(x, t)

∂x2
− V (x, t)ψ(x, t)− |ψ(x, t)|2 ψ(x, t) = 0, x ∈ [−π,π], t ∈ [−1.5, 1.5]

(4.2.1)

ψ(x,−1.5) = ψ(x, 1.5), x ∈ [−π,π] (4.2.2)

ψ(−π, t) = ψ(π, t), x ∈ [−1.5, 1.5] (4.2.3)

ここで, ポテンシャル V (x, t)は

V (x, t) =
4(x2 − t2)− 1

(x2 + t2 + 0.25)2
− 2 (4.2.4)

とする. 初期状態は

ψ(x,−1.5) =

[
1 − 4(1− 3i)

4(x2 + 2.25) + 1

]
exp(−1.5i) (4.2.5)

を用いた.

DNNの構造, 学習の手法, 学習結果を以下の表と図に示す. DNNの構造, ハイパーパラメータ,

データ数は学習時間と学習の精度の両方を見ながら決めた.

表 4.7: DNNの構造層 ニューロン数 活性化関数 重みの初期値
入力層 2

1層 60 SiLU Xavier

2層 60 SiLU Xavier

3層 60 SiLU Xavier

4層 60 SiLU Xavier

出力層 2 Xavier

最適化手法 Adam

学習係数 0.001

β1,β2 0.9, 0.999

表 4.8: 最適化手法と設定

学習データ (領域内部, 境界, 初期)　 6000, 300, 600

学習回数 10000

学習時間 216s

損失関数の最終値 7.8104e-05

表 4.9: 学習のデータと結果
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表 4.9: 学習のデータと結果
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2. ⾮線形シュレディンガー⽅程式



layer ニューロン
数

活性化関数 Initial 
weight

input 2
1st 60 SiLU Xavier
2nd 60 SiLU Xavier
3rd 60 SiLU Xavier
4th 60 SiLU Xavier
output 2 Xavier

図 4.6: 損失関数の推移

図 4.7: 非線形シュレーディンガー方程式の学習結果 : 左端が数値解, 真ん中が PINN解, 右端が絶
対誤差

図 4.2を見ると先ほどの量子調和振動子の損失関数の推移と比べると少しなだらかに減少してい
るが, 学習がうまく進んでいることがことが確認できる. また, 図 4.3の絶対誤差は最大で 0.07程
度となっており PINN解はうまく解を予測することができていることがわかる.

4.2.1 C∞orCkperiodiclayerを追加したDNN

6層のDNNに C∞orCkperiodiclayerを追加し学習を行った. 最初の 1, 2層が今回新たに追加し
たレイヤーの層である. DNNの構造, 学習の手法, 学習結果を以下の表と図に示す. DNNの構造,

35

2. ⾮線形シュレディンガー⽅程式

• 最適化⼿法: Adam optimizer
• η=0.001, β1 = 0.9, β2 =0.999 
• 学習データ数: i.c. 600,  b.c. 300,  inside 6000
• 学習回数: 10000
• 学習時間: 216s
• 損失関数の最終値: 7.8104e-05



Numerical result PINN

図 4.6: 損失関数の推移

図 4.7: 非線形シュレーディンガー方程式の学習結果 : 左端が数値解, 真ん中が PINN解, 右端が絶
対誤差

図 4.2を見ると先ほどの量子調和振動子の損失関数の推移と比べると少しなだらかに減少してい
るが, 学習がうまく進んでいることがことが確認できる. また, 図 4.3の絶対誤差は最大で 0.07程
度となっており PINN解はうまく解を予測することができていることがわかる.

4.2.1 C∞orCkperiodiclayerを追加したDNN

6層のDNNに C∞orCkperiodiclayerを追加し学習を行った. 最初の 1, 2層が今回新たに追加し
たレイヤーの層である. DNNの構造, 学習の手法, 学習結果を以下の表と図に示す. DNNの構造,
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Absolute error

従来の数値計算と境界を除いて⼀致

Cf.)Cuomo, et al.(2022) 
Zhang, Bai (2022)2. ⾮線形シュレディンガー⽅程式
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DNNに層を加えることで⾃動的に周期境界条件を満たすようにする⼿法

◆ 𝑪𝒌 or 𝑪T 𝐩𝐞𝐫𝐢𝐨𝐝𝐢𝐜 𝐥𝐚𝐲𝐞𝐫 Dong, Ni (2020)

𝜎 ∶ 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

周期𝐿1を持つ周期関数を組み込み学習させることで周期境界条件を満たすモデルを構築
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ハイパーパラメータ, データ数は学習時間と学習の精度の両方を見ながら決めた.

表 4.10: DNNの構造層 ニューロン数 活性化関数 重みの初期値
入力層 2

1層 40 SiLU Xavier

2層 40 SiLU Xavier

3層 60 SiLU Xavier

4層 60 SiLU Xavier

5層 60 SiLU Xavier

6層 60 SiLU Xavier

出力層 2 Xavier

最適化手法 Adam

学習係数 0.001

β1,β2 0.9, 0.999

表 4.11: 最適化手法と設定

学習データ (領域内部, 初期)　 6000, 600

学習回数 10000

学習時間 247s

損失関数の最終値 9.2192e-05

表 4.12: 学習のデータと結果

図 4.8: 損失関数の推移
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layer ニューロン
数

活性化関数 Initial 
weight

input 2
1st 40 SiLU Xavier
2nd 40 SiLU Xavier
3rd 60 SiLU Xavier
4th 60 SiLU Xavier
5th 60 SiLU Xavier
6th 60 SiLU Xavier
output 2 Xavier

Hamada, TM  in progress

• 最適化⼿法: Adam optimizer
• η=0.001, β1 = 0.9, β2 =0.999 
• 学習データ数: i.c. 600, inside 6000
• 学習回数: 10000
• 学習時間: 247s
• 損失関数の最終値: 9.2192e-05

◆ ⾮線形シュレディンガー⽅程式 (𝑪𝒌 or 𝑪" 𝐩𝐞𝐫𝐢𝐨𝐝𝐢𝐜 𝐥𝐚𝐲𝐞𝐫)



従来のDNNより早い収束

Standard DNN(Deep Neural Network) 𝑪, 𝐩𝐞𝐫𝐢𝐨𝐝𝐢𝐜 𝐥𝐚𝐲𝐞𝐫

図 4.6: 損失関数の推移

図 4.7: 非線形シュレーディンガー方程式の学習結果 : 左端が数値解, 真ん中が PINN解, 右端が絶
対誤差

図 4.2を見ると先ほどの量子調和振動子の損失関数の推移と比べると少しなだらかに減少してい
るが, 学習がうまく進んでいることがことが確認できる. また, 図 4.3の絶対誤差は最大で 0.07程
度となっており PINN解はうまく解を予測することができていることがわかる.

4.2.1 C∞orCkperiodiclayerを追加したDNN

6層のDNNに C∞orCkperiodiclayerを追加し学習を行った. 最初の 1, 2層が今回新たに追加し
たレイヤーの層である. DNNの構造, 学習の手法, 学習結果を以下の表と図に示す. DNNの構造,
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ハイパーパラメータ, データ数は学習時間と学習の精度の両方を見ながら決めた.

表 4.10: DNNの構造層 ニューロン数 活性化関数 重みの初期値
入力層 2

1層 40 SiLU Xavier

2層 40 SiLU Xavier

3層 60 SiLU Xavier

4層 60 SiLU Xavier

5層 60 SiLU Xavier

6層 60 SiLU Xavier

出力層 2 Xavier

最適化手法 Adam

学習係数 0.001

β1,β2 0.9, 0.999

表 4.11: 最適化手法と設定

学習データ (領域内部, 初期)　 6000, 600

学習回数 10000

学習時間 247s

損失関数の最終値 9.2192e-05

表 4.12: 学習のデータと結果

図 4.8: 損失関数の推移
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◆ ⾮線形シュレディンガー⽅程式 (𝑪𝒌 or 𝑪" 𝐩𝐞𝐫𝐢𝐨𝐝𝐢𝐜 𝐥𝐚𝐲𝐞𝐫)



Numerical results    PINN Absolute error

図 4.9: C∞orCkperiodiclayer を追加した場合の学習結果 : 左端が数値解, 真ん中が PINN解, 右
端が絶対誤差

新たなレイヤーを追加したモデルと追加していないモデルを比較すると, 損失関数の推移は新た
にレイヤーを追加したモデルの方が急速に小さくなっていることが確認できる. 同様に, 絶対誤差
も新たにレイヤーを追加した方が小さくなることが確認できる. 境界条件の損失関数をなくすこと
で最適化問題が簡単化されたり, レイヤーを追加することによりモデルの表現が向上したのではな
いかと考えられる. 先程の調和振動子の結果と合わせて,新たなレイヤーの追加がモデルの性能向
上に寄与していると考えられる.

4.3 シュレーディンガー-ニュートン方程式
シュレーディンガー-ニュートン方程式は次のように書ける.

i
∂ψ(x, t)

∂t
+

[
1

2

∂2

∂x2
−

∫ |ψ(x, t)|2

|x− y| dy

]
ψ(x, t) = 0 x ∈ [−π,π], t ∈ [−1.5, 1.5] (4.3.1)

この形で損失関数に組み込むと積分項の計算量が大幅に増加し, 学習効率が低下する. またガウ
ス求積法による積分の近似を求めることになり離散化誤差が発生する. そこで,積分の部分をQ(x, t)

と置き, 2章で示したようにポアソン方程式の形式で考える.

∇2Q(x, t) = |ψ(x, t)|2 (4.3.2)

よって, 損失関数に次の 2つの方程式を組み込む.
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従来の数値計算と⾼い⼀致

Hamada, TM  in progress
◆ ⾮線形シュレディンガー⽅程式 (𝑪𝒌 or 𝑪" 𝐩𝐞𝐫𝐢𝐨𝐝𝐢𝐜 𝐥𝐚𝐲𝐞𝐫)



波動関数の確率密度を“質量密度”として取り扱い，波動関数の
fragment同⼠の重⼒相互作⽤を取り⼊れた⽅程式．
量⼦測定や宇宙論において重要視されている．

Diosi(1984) Penrose(1996)

典型的な時間スケール

確率波の量子トンネルの様子

シュレディンガー⽅程式とポアソン⽅程式の連⽴系

<latexit sha1_base64="EyckQcoRff1OnKRrOX+0U138QCk="></latexit>

i~ @
@t
 (x, t) =


� ~2
2m

r2 �Gm2

Z
d3x0 | (x0, t)|2

|x� x0|

�
 (x, t)

<latexit sha1_base64="MnA9lB6XJXczVJZebiZcjJMATP4="></latexit>

⌧ = ~3G�2m�5

<latexit sha1_base64="9wGEbt6Rzw0LSnqzGCJ2u/eTp5U="></latexit>

i@t (x, t) +


r2

2
�Q(x, t)

�
 (x, t) = 0

r2Q(x, t) = | (x, t)|2
電⼦質量の場合, τ~ 1068 s<latexit sha1_base64="IddQ1cxgPpmk902XRpDoGAKUk4k="></latexit>

a = ~2G�1m�3

3. シュレディンガー-ニュートン⽅程式



Hamada, TM  in progress

この図の横軸は波動関数の横幅を、縦軸は時間を表している。どのような結果なのかを見てみる
と、時間が経つにつれて収縮しようとしたり、逆に膨張しようとしたりを繰り返す、振動する解が
得られたということになる。不思議な解ではあるが、少なくとも波動関数の自己重力の影響が現れ
ていることはほぼ間違いなさそうである。

5.4 考察
少し話は逸れるかもしれないが、ここでは量子力学における観測について、個人的な見解を述べ
ようと思う。
上で少し波動関数の収縮について触れたが、日常的に考えて、観測後に状態が変化するという事
実は受け入れがたいものである。もちろん日常的なスケール（マクロなスケール）ではこういった
ことは起こらないが、量子力学（ミクロなスケール）では起こるということなので、別に私たちの
日常の範囲内で起こっていないというのは当然であろう。故に、特に不思議に思う必要はないこと
ではあるかもしれないが、やはり単に事実として見れば受け入れがたくは感じてしまう。
そこで色々考えてみたわけであるが、その中の 1つとして、パラレルワールド（平行世界）とい
う概念を取り入れた考え方があるので、それを紹介しようと思う。
一般的な考え方としては、観測前は様々な状態の重ね合わせの状態であり、観測によってその中
の 1つが確率的に選ばれるというものであろう。しかしここでは、平行世界の考え方を紹介する。
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初期条件:

Physics-Informed Neural Network(PINN)を用いた量子系䛾時間発展について

近畿大学理工学部理学科物理学コース 場䛾量子論・素粒子論研究室 20-1-0320-390 濱田雄大

本研究䛾背景と目的 機械学習における「学習」と䛿

Physics Informed Neural Network(PINN)
基礎方程式, 境界条件, 初期状態を損失関数に組み込むことで基礎方程式䛾解
䛾予測を行う. 

𝜕𝑛𝑢(𝑥, 𝑡)
𝜕𝑥𝑛

+ 𝑓 𝑥, 𝑡 = 0
𝑢 0, 𝑡 = 𝜙 0, 𝑡
𝑢 𝑙, 𝑡 = 𝑣(𝑙, 𝑡)
𝑢 𝑥, 0 = 𝑔(𝑥, 0)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑖𝑛𝑖𝐿𝑖𝑛𝑖 + 𝜆𝑏𝑐𝐿𝑏𝑐 + 𝜆𝑓𝐿𝑓

𝐿𝑖𝑛𝑖 =
1

𝑁𝑖𝑛𝑖
෍
𝑖=1

𝑁𝑖𝑛𝑖

𝑢𝑝𝑟𝑒𝑑 𝑥𝑖𝑖𝑛𝑖, 0: 𝜃 − 𝑔(𝑥𝑖𝑖𝑛𝑖, 0: 𝜃)
2

𝐿𝑏𝑐 =
1

𝑁𝑏𝑐
σ𝑖=1
𝑁𝑏𝑐 𝑢𝑝𝑟𝑒𝑑 0, 𝑡𝑖𝑏𝑐: 𝜃 − 𝜙 0, 𝑡𝑖𝑏𝑐

2

+ 1
𝑁𝑏𝑐

σ𝑖=1
𝑁𝑏𝑐 𝑢𝑝𝑟𝑒𝑑 𝑙, 𝑡𝑖𝑏𝑐: 𝜃 − 𝑣 𝑙, 𝑡𝑖𝑏𝑐

2

𝐿𝑓 =
1
𝑁𝑓

෍
𝑖=1

𝑁𝑓 𝜕𝑛𝑢𝑝𝑟𝑒𝑑 𝑥𝑖
𝑓, 𝑡𝑖

𝑓: 𝜃
𝜕𝑥𝑛

+ 𝑓(𝑥𝑖
𝑓, 𝑡𝑖

𝑓)
2

学習を行う領域䛾座標𝑥,時間𝑡䛾サンプリングデータを入力し, 損失関数𝐿𝑓をで
きるだけ最小にするようにDNN䛾パラメータ𝜃を調整していく.

𝐶∞ 𝑜𝑟 𝐶𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑙𝑎𝑦𝑒𝑟

Split Step Fourier 法

時間発展演算子䛾概念に基づき実空間と波数空間を交互
に考えることで効率的にシュレディンガー方程式を解く手
法である. 
時間発展演算子を鈴木 Trotter展開䛾２次までを用いる. 

exp −𝑖 𝑇 + 𝑉 𝑑𝑡 ≈ exp −𝑖
𝑉𝑑𝑡
2 𝑒𝑥𝑝 −𝑖𝑇𝑑𝑡 𝑒𝑥𝑝 −𝑖

𝑉𝑑𝑡
2 + 𝒪(𝑑𝑡3)

𝜓 𝑥, 𝑡 + 𝑑𝑡 = exp −𝑖
𝑉𝑑𝑡
2 𝐼𝐹𝐹𝑇 (exp −𝑖 ෠𝑇𝑑𝑡 )𝐹𝐹𝑇 𝑒𝑥𝑝 −𝑖

𝑉𝑑𝑡
2 𝜓(𝑥, 𝑡)

損失関数を指標とし, そ䛾値を小さくするような重みパラメータを自動的に探し出すことをい
う.  よって, 最適なパラメータ䛾組み合わせを見つける最適化問題に帰着する.  例え䜀, 勾
配法を用いて各層にあるパラメータ𝑊を更新し損失関数をゼロに近づけていく. 

𝑊 ← 𝑊 − 𝜂∇𝐿 𝑊 , 𝜂: 学習率
損失関数䛾値がゼロに近けれ䜀近いほど良いモデルと考えることができる.

ニューラルネットワークを用いて自動的に周期境界条件を満たすよ
うにする. 

𝑣1𝑖 𝑥 = 𝜙 𝐴1𝑖 cos
2𝜋
𝐿1

𝑥 + 𝜏1𝑖 + 𝑐1𝑖 ,

𝑣2𝑖 𝑡 = 𝜙 𝐴2𝑖𝑡 + 𝑐2𝑖 ,

𝑞𝑗 𝑥, 𝑡 = 𝜙(σ𝑖=1
𝑚 𝑣1𝑖 𝑥 𝑊𝑖𝑗

1 + σ𝑖=1
𝑚 𝑣2𝑖 𝑊𝑖𝑗

2 + 𝐵𝑗),   1≤ 𝑗 ≤ 𝑛,

𝐴1𝑖, 𝐴2𝑖, 𝜏1𝑖, 𝑐1𝑖, 𝑐2𝑖,𝑊𝑖𝑗
(1),𝑊𝑖𝑗

(2), 𝐵𝑗: training parameter

周期𝐿1を持つ周期関数を組み込むこみ学習させることで𝐶∞周期境
界条件を満たすモデルを構築することができる. 

学習䛾収束速度が上昇し予測䛾精度䛾向上が見られた. 

高速フーリエ変換を用いて実空間と
波数空間を切り替えながら作用さ
せる.

調和振動子䛾重䛽合わせ䛾時間発展

𝑖
𝜕𝜓
𝜕𝑡 = −

1
2
𝜕2

𝜕𝑥2 +
1
2 𝑥

2 𝜓. 𝑥𝜖 −𝜋, 𝜋 , 𝑡𝜖[0, 2𝜋]

初期状態䛿基底状態と第1励起状態䛾
重䛽合わせ状態

𝜓01 0, 𝑥 =
1
2

4 𝜔
𝜋 exp −

𝑥2

2 1 + 2𝑥

境界条件䛿

𝜓 −𝜋, 𝑡 = 𝜓(𝜋, 𝑡)

ニューラルネットワーク䛿実数䛾み扱うこと
ができる䛾で, 複素数値䛾解を𝜓 𝑥, 𝑡 =
𝑢 + 𝑖𝑣として表す. 

中間層䛾ニューロン数 40

活性化関数 SiLU関数

最適化手法 Adam  (lr = 0.001)

学習データ(初期状態, 境
界条件, 内部)

300, 300, 3000

学習回数 10000

学習時間 163s

損失関数䛾最終値 1.8567e-04

非線形シュレーディンガー方程式

𝑖
𝜕𝜓
𝜕𝑡 +

1
2
𝜕2𝜓
𝜕𝑥2 −

4 𝑥2 − 𝑡2 − 1
(𝑥2 + 𝑡2 + 0.25)2 − 2 𝜓 − 𝜓 2𝜓 = 0,

𝑥𝜖 −𝜋, 𝜋 , 𝑡 ∈ [−1.5, 1.5]

初期状態, 境界条件
𝜓 x,−1.5 = 1 −

4(1 − 3𝑖)
4 𝑥2 + 2.25 + 1 exp −1.5𝑖 ,

𝜓 −𝜋, 𝑡 = 𝜓(𝜋, 𝑡)

中間層䛾ニューロン数 60

活性化関数 SiLU関数

最適化手法 Adam  (lr = 0.001)

学習データ(初期状態, 境界条件, 
内部)

300, 600, 6000

学習回数 10000

学習時間 216s

損失関数䛾最終値 7.8104e-05

• 機械学習を用いて量子系䛾時間発展について考えたい. 
• 機械学習䛾手法䛾一つであるPhysics-Informed Neural 

Network(PINN)を用いて量子系䛾時間発展䛾問題を効率的か
つ精度良く求める方法や逆問題を解くことを目標として研究を
行う. 

シュレーディンガー-ニュートン方程式

𝑖
𝜕𝜓
𝜕𝑡 +

1
2
𝜕2

𝜕𝑥2 − 𝑉(𝑥, 𝑡) 𝜓 = 0,

∇2𝑉 𝑥, 𝑡 = 𝜓(𝑥, 𝑡) 2,                                    𝑥 ∈ −10,10 , 𝑡 ∈ [0, 2]

初期状態

𝜓 𝑥, 0 =
1

𝜋
1
4

exp −
𝑥2

2

中間層䛾ニューロン数 60

活性化関数 SiLU関数

最適化手法 L-BFGS  (lr = 0.1)

学習データ(初期状態,  内部) 2000, 80000

学習回数 2000

学習時間 7639s

損失関数䛾最終値 2.6814e-05

PyTorch ver2.1.0 を用いて実装. Ubuntu ver 22.04, Intel 
Core i5-10400F2.90GHz CPU, NVIDIA GeForce RTX 3060 
12.0GB GPU,シュレーディンガー-ニュートン方程式䛾実験
䛿Google Colaboratory 上で GPU を用いて行う. 以下, 中間
層䛿４層とした. 

まとめと今後䛾展望

• PINNを用いて量子系䛾時間発展を予測するDNNモデルを作成した. 調和振動子と非線形シュレーディンガー方程式に対するモデル䛿うまく解を予測すること
ができることがわかった. しかし, シュレーディンガー-ニュートン方程式䛿全体䛾特徴䛿うまく捉えられているが細部までうまく表現ができていないことがわかっ
た.また,損失関数䛾値が十分に小さいにもかかわらずモデルが解を適切に予測できていないことから, PINN䛾学習において損失関数䛾値だけを見て解を正確
に予測できているかを判断する䛾䛿難しい可能性がある. 

• 新たにレイヤーを追加することで学習䛾収束速度䛾向上, 予測䛾精度が向上することがわかった. 適切にレイヤーを追加することで汎用性が向上する可能性
がある. 

• 今後䛾研究方針として, 学習䛾収束速度, 予測精度, モデル䛾汎用性䛾向上や逆問題について研究を進めていく. 

従来䛾ニューラルネットワークと違い数値解など䛾学習データが必要ない. また, 
物理的な制約を組み込んでいるためより合理的な結果が得られる. 

A Method for Representing Periodic Functions and Enforcing Exactly Periodic Boundary Conditions with Deep Neural Networks  https://arxiv.org/abs/2007.07442 , A Novel Method for Solving Nonlinear Schrödinger Equation with a Potential by Deep Learning https://www.scirp.org/journal/paperinformation.aspx?paperid=120743#ref27, 
A-PINN https://www.sciencedirect.com/science/article/pii/S0021999122003229 , C.M.ビショップ 『パターン認識と機械学習 上』 (丸善出版, 2012)

Split Step Fourier法

cf.) Mocz, et al. (2017)

|x|

・SN⽅程式の数値計算
<latexit sha1_base64="9wGEbt6Rzw0LSnqzGCJ2u/eTp5U="></latexit>

i@t (x, t) +


r2

2
�Q(x, t)

�
 (x, t) = 0

r2Q(x, t) = | (x, t)|2

|ψ(x,t)|

3. シュレディンガー-ニュートン⽅程式

波束幅が⼀定周期で振動

<latexit sha1_base64="MhN+hsqBKAQCMjKEnnmYevVW/DI="></latexit>

 (x, 0) / exp
�
�|x|2/(2�2)

�



ラプラシアンが拡散，ポテンシャル項が引⼒
の効果を⽣み出す

波束サイズの範囲で時間的に振動する振る舞い
振動の詳細は τ/σ に依存

|x|

<latexit sha1_base64="MhN+hsqBKAQCMjKEnnmYevVW/DI="></latexit>
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�

<latexit sha1_base64="9wGEbt6Rzw0LSnqzGCJ2u/eTp5U="></latexit>

i@t (x, t) +


r2

2
�Q(x, t)

�
 (x, t) = 0

r2Q(x, t) = | (x, t)|2

この図の横軸は波動関数の横幅を、縦軸は時間を表している。どのような結果なのかを見てみる
と、時間が経つにつれて収縮しようとしたり、逆に膨張しようとしたりを繰り返す、振動する解が
得られたということになる。不思議な解ではあるが、少なくとも波動関数の自己重力の影響が現れ
ていることはほぼ間違いなさそうである。

5.4 考察
少し話は逸れるかもしれないが、ここでは量子力学における観測について、個人的な見解を述べ
ようと思う。
上で少し波動関数の収縮について触れたが、日常的に考えて、観測後に状態が変化するという事
実は受け入れがたいものである。もちろん日常的なスケール（マクロなスケール）ではこういった
ことは起こらないが、量子力学（ミクロなスケール）では起こるということなので、別に私たちの
日常の範囲内で起こっていないというのは当然であろう。故に、特に不思議に思う必要はないこと
ではあるかもしれないが、やはり単に事実として見れば受け入れがたくは感じてしまう。
そこで色々考えてみたわけであるが、その中の 1つとして、パラレルワールド（平行世界）とい
う概念を取り入れた考え方があるので、それを紹介しようと思う。
一般的な考え方としては、観測前は様々な状態の重ね合わせの状態であり、観測によってその中
の 1つが確率的に選ばれるというものであろう。しかしここでは、平行世界の考え方を紹介する。
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3. シュレディンガー-ニュートン⽅程式

・SN⽅程式の数値計算

初期条件:

波束幅が⼀定周期で振動

Hamada, TM  in progress cf.) Mocz, et al. (2017)



3D Time evolution in 2D-projected space

ラプラシアンが拡散，ポテンシャル項が引⼒
の効果を⽣み出す

振動する振る舞いを⾒せるが，引⼒により最終的に
波束がクラスターを形成：宇宙の⼤規模構造？

初期条件: random noise
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・SN⽅程式の数値計算

Hamada, TM  in progress cf.) Mocz, et al. (2017)



最適化手法 L-BFGS

学習係数 0.1

表 4.14: 最適化手法と設定

学習データ (領域内部, 初期)　 80000, 2000

学習回数 2000

学習時間 7639.76s

損失関数の最終値 2.6814e-05

表 4.15: 学習のデータと結果

図 4.10: 損失関数の推移

図 4.11: シュレーディンガー-ニュートン方程式の学習結果 : 左端が数値解, 真ん中が PINN解, 右
端が絶対誤差

損失関数は十分小さな値を示している一方で,図 4.11の結果を見ると全体の特徴はうまく捉える
ことができているが, 細かい部分においては予測が不十分であることが確認できる.
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Hamada, TM  in progress

layer ニューロン
数

活性化関数 Initial 
weight

input 4
1st 40 SiLU Xavier
2nd 40 SiLU Xavier
3rd 60 SiLU Xavier
4th 60 SiLU Xavier
5th 60 SiLU Xavier
6th 60 SiLU Xavier
output 3 Xavier

◆ PINN for シュレディンガー-ニュートン⽅程式

• 最適化⼿法: L-BFGS optimizer
• η=0.1
• 学習データ数: i.c. 2000, inside 80000
• 学習回数: 2000
• 学習時間: 7640s
• 損失関数の最終値: 2.6814e-05



定性的に数値計算と⼀致．
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前半のまとめ

・Ck or C
♾

periodic layerを導⼊することで⾮線形シュレディンガー⽅程式の
解を⾼い精度で予測できる．

・シュレディンガー-ニュートン⽅程式の興味深い性質は量⼦測定や宇宙論の⽂
脈で⾮常に重要である．

・PINN with Ck or C
♾

periodic layer はシュレディンガー-ニュートン⽅程式の
解を少なくとも定性的には予測できている．適切なセットアップの改善に
よってさらなる制度の改善が⾒込まれる．

Cf.) SPINN: Advancing Cosmological Simulations of Fuzzy Dark Matter with Physics Informed Neural Networks
A. K. Mishra, E. Tolley, [arXiv:2506.02957]
“We introduce the Schrodinger-Poisson informed neural network (SPINN) which solve nonlinear Schrodinger-
Poisson (SP) equations to simulate the gravitational collapse of Fuzzy Dark Matter (FDM) in both 1D and 3D setting…"



NNはGinsparg-Wilson関係式から
格⼦カイラルフェルミオンを⾒つけられるか？



格⼦上のフェルミオン作⽤



格⼦フェルミオンのNo-go定理

形成する．

i
∂ψ

∂t
= −1

2
∇2ψ + Φψ (Schrödinger Eq.) (2)

∇2Φ = 4πG|ψ|2 (Poisson Eq.) (3)

2.2 数値計算の難所

• 非線形性と連立性: 波動関数 ψ と重力ポテンシャル Φが互いに依存し合っており（Coupled

system），高度な非線形性を持つ．
• 境界条件: ポテンシャル Φ は無限遠でゼロ (Φ → 0 as r → ∞) となる境界条件を持つが，
有限の計算領域でこれを扱うには工夫が必要である．

2.3 PINNによるアプローチと成果

• ネットワーク構成: 入力 (t, x) に対し，実部・虚部 (Reψ, Imψ) およびポテンシャル Φ の 3

つを同時出力するMulti-outputモデルを採用．
• 結果: 従来の差分法や Shooting法と比較しても，極めて少ないパラメータ数で基底状態お
よび励起状態の解を精度よく再現した．

• 含意: PINNは単なる「補間」ツールではなく，複雑な物理ダイナミクスを支配方程式のみ
から学習する能力を持つ．

3 The Challenge of Lattice Fermions

3.1 No-Go Theorem on the Lattice

場の量子論を格子上で正則化する際，フェルミオン場の記述には特有の困難が伴う．単純な離散
化（Naive Fermion）を行うと，運動量空間のブリルアンゾーンの端点（kµ = π）において，本来
存在しないはずの余分な粒子（ダブラー）が 2d − 1個現れてしまう．Nielsen-Ninomiyaの定理に
よれば，以下の 4つの条件を同時に満たす格子フェルミオン作用は存在しない．

1. 局所性 (Locality)

2. 並進対称性 (Translational Invariance)

3. エルミート性 (Hermiticity)

4. カイラル対称性 (Chiral Symmetry)

4

Locality Translation Hermiticity onsite-chiral

Naive ◯ ◯ ◯ ◯

Staggered ◯ ◯ ◯ ◯

Wilson ◯ ◯ ◯ ×

Domain-wall × ◯ ◯ ◯→ gapless 
edge mode

Overlap △ ◯ ◯ ×→ GW 
relation



⽐較的安易な解決法: Wilson fermion

格子 QCD の数値計算において広く用いられるWilson フェルミオンは，ダブラーを除去するた
めに意図的にカイラル対称性を破る質量項（Wilson項）を導入する手法である．

DW (k) =
∑

µ

[iγµ sin kµ + r(1− cos kµ)]

ここで r はWilsonパラメータ（通常 r = 1）である．この項により，k = 0（物理モード）では質
量ゼロ，k = π（ダブラー）では 2r の質量を持ち，ダブラーは連続極限で分離される．しかし，代
償として {DW , γ5} ̸= 0 となり，カイラル対称性は明示的に破れる．

3.2 Overlap Fermion and Ginsparg-Wilson Relation

格子上で「修正された形でのカイラル対称性」を保つ条件として，Ginsparg-Wilson (GW)

関係式が知られている．
Dγ5 + γ5D = aDγ5D (4)

ここで a は格子間隔である（以下，特に断らない限り a = 1 の単位系を用いる）．この関係式を満
たす演算子 D の厳密解の一つが Overlapフェルミオン である．

Dov = 1 + γ5sgn(HW ), HW = γ5DW (5)

Overlap演算子は厳密なカイラル対称性とトポロジー（指数定理）を持つ理想的なフェルミオンで
あるが，巨大行列の符号関数 sgn(HW ) を計算する数値コストが極めて高い（多項式近似や有理関
数近似が必要）．本研究の目的は，この複雑な行列演算をニューラルネットワークによる関数近似
で代替・構築することである．

4 Methodology (PINN Framework)

4.1 Problem Setup

運動量空間における Dirac 演算子 D(k) のカーネルをニューラルネットワークで学習する．対
象とする系は 2次元格子フェルミオン（L× L = 24× 24）である．演算子 D(k) はクリフォード
代数の基底 {γµ, I} で展開される．

D(k) = i
∑

µ

γµVµ(k) + IM(k) (6)

ここで Vµ(k)（ベクトル成分）とM(k)（スカラー成分）が学習対象の関数である．
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Wilson fermion

◆ 1/a additive mass renormalization  → Fine-tune

◆ 15 species are decoupled → doubler-less

◆ Domain-wall & Overlap fermions   → costs

Physical (0,0,0,0) :
Doubler(π/a,0,0,0) :

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

January 9, 2012

1 Introduction

DW (p) =
1
a

∑

µ

[iγµ sin apµ + (1 − cos apµ)] (1)

ϵx = (−1)x1+x2+x3+x4 (2)

mqa ≡ |M̂ − M̂c| (3)

m2
πa2 =

8
3
mqa + O(a2) (4)

M̂2
c = 4 (5)

m2
π = 0 (6)

Sgw =
∑

x,y

ψ̄x[γµDµ + r(1 + Mf ) + m]xyψy (7)

Ψ̄(1 ⊗ X)Ψ (8)

f = P, T, A, V (9)

H2 = D†D + m2 ≥ 0 (10)

Hgw = γ5(Dnf − MP ) (11)

Hsw = ϵ(Dst − M (A)
f ) = Γ55(Dst − M (A)

f ) (12)
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Only one flavor is massless, 
while others have O(1/a) mass. 

Lattice fermion action with species-splitting term
X

n,µ

a5

2
 ̄n(2 n �  n+µ �  n�µ)

6

FIG. 1. Free Dirac spectrum of Wilson fermion (r = 1) with m = 0 on a 204 lattice. The degenerate

spectrum of 16 species for naive fermions are split into five branches with 1, 4, 6, 4 and 1 species.

transformations,

 n ! exp
h
i
X

X

⇣
✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
 n ,

 n !  n exp
h
i
X

X

⇣
�✓(+)

X �(+)

X + ✓(�)

X �(�)

X

⌘ i
, (2)

where �(+)

X and �(�)

X are site-dependent 4⇥ 4 matrices,

�(+)

X 2

⇢
14 , (�1)n1+...+n4�5 , (�1)ňµ�µ , (�1)nµi�µ�5 , (�1)nµ,⌫

i [�µ , �⌫ ]

2

�
, (3)

�(�)

X 2

⇢
(�1)n1+...+n414 , �5 , (�1)nµ�µ , (�1)ňµi�µ�5 , (�1)ňµ,⌫

i [�µ , �⌫ ]

2

�
, (4)

with ňµ =
P

⇢ 6=µ n⇢, nµ,⌫ = nµ + n⌫ and ňµ,⌫ =
P

⇢ 6=µ,⌫ n⇢. It is notable that the onsite fermion

mass term  ̄n n breaks this U(4)⇥U(4) to the U(4) subgroup �(+)

X . In the presence of the Wilson

term the U(4)⇥ U(4) invariance is broken to the U(1) invariance under 14 in Eq. (3).

In Refs. [24, 61], it was shown that the Wilson fermion with the “central-branch" condition,

MW ⌘ m+ 4r = 0, (5)

has an extra U(1) symmetry, denoted as U(1)V . It becomes clear if one is reminded that the onsite

term (⇠  ̄n n) breaks all the invariance under the transformation �(�)

X in Eq.(4). Thus, dropping

onsite terms can restore some invariance under the group, and the action comes to have larger

symmetry.

The free Wilson fermion with this condition (5) gives six-flavor massless fermions in the con-

tinuum, which correspond to the central branch of the Wilson Dirac spectrum as shown in Fig. 2.

They are excitations around the Dirac zeros at p = (⇡,⇡, 0, 0), (⇡, 0,⇡, 0), (⇡, 0, 0,⇡), (0,⇡,⇡, 0),

1 4 46 1

m=0
m=2/a m=4/a m=6/am=8/a

Re-interpret it in terms of Symmetry-Protected-Topological(SPT) order

Wilson (1975)



格⼦上の厳密カイラル対称性：Ginsparg-Wilson relation

1 The Lattice Fermion Problem

1.1 Naive Fermion and Doublers

Euclid空間における連続理論の Dirac作用 S =
∫
d4xψ̄(γµ∂µ +m)ψ を単純に格子化（Naive

discretization）すると、運動量空間でのプロパゲータは以下となる（格子定数 a = 1 とする）。

S−1
F (k) = i

∑

µ

γµ sin kµ +m

このプロパゲータは、物理的な極 kµ = 0 だけでなく、ブリルアンゾーンの端点 kµ = π を含む

24 = 16 箇所の領域で極を持つ。これらは「ダブラー（Doublers）」と呼ばれ、理論のユニバーサ

リティクラスを変化させる非物理的な粒子である。

1.2 Nielsen-Ninomiya No-Go Theorem

ダブラーを排除しようとする試みは、Nielsen-Ninomiyaの定理によって制限を受ける。この定

理は、以下の条件を全て満たす格子 Dirac演算子 D は存在しないことを主張する。

1. 並進対称性 (Translational Invariance)

2. 局所性 (Locality)

3. エルミート性 (Hermiticity): γ5Dγ5 = D†

4. カイラル対称性 (Chiral Symmetry): {D, γ5} = 0

Wilsonフェルミオンは、質量項と同様の項（Wilson項 − r
2

∑
∇2）を加えることでダブラーにカッ

トオフオーダーの質量を与えて分離するが、代償としてカイラル対称性（条件 4）を明示的に破る。

2 Ginsparg-Wilson Relation

2.1 The Relation

1982年、GinspargとWilsonは、くりこみ群のブロック変換の考察から、格子上でカイラル対

称性が満たすべき「修正された条件」を導いた。

γ5D +Dγ5 = aDγ5D

3

これを Ginsparg-Wilson (GW) 関係式 と呼ぶ。右辺の O(a) の項は格子アーティファクトで

あり、連続極限 (a → 0) では通常のカイラル対称性 {D, γ5} = 0 に回帰する。

2.2 Exact Chiral Symmetry on the Lattice

Lüscher (1998) は、演算子 D が GW関係式を満たすとき、格子作用は以下の「修正されたカ

イラル変換」に対して厳密に不変であることを示した。

δψ = iϵγ5
(
1− a

2
D
)
ψ

δψ̄ = iϵψ̄
(
1− a

2
D
)
γ5

この変換による作用の変化 δS = ψ̄
(
Dγ5(1− a

2D) + (1− a
2D)γ5D

)
ψ は、GW 関係式を用いる

と厳密にゼロとなる。つまり、GW関係式を満たすフェルミオン（GWフェルミオン）は、格子

上で定義可能な「厳密なカイラル対称性」を持つ。

3 Overlap Fermions

3.1 Neuberger’s Construction

GW関係式の一般解として、Neuberger (1998) は Overlap Dirac演算子 を提案した。これ
は、カイラル対称性を破っているがダブラーを含まない演算子（典型的にはWilson Dirac演算子

DW）を出発点とし、そのエルミート部分 HW = γ5DW の符号関数を用いて構成される。

Dov =
1

a
(1 + γ5sgn(HW ))

ここで sgn(H) は行列符号関数である。

sgn(H) = H(H2)−1/2 =
∑

i

sgn(λi) |ui⟩ ⟨ui|

3.2 Proof of GW Relation

Overlap演算子が GW関係式を満たすことは容易に示せる。定義より

γ5Dov =
1

a
(γ5 + sgn(HW ))

これより γ5Dov+Dovγ5 = 2
aγ5+

1
a (sgn(HW )+γ5sgn(HW )γ5)となるが、sgn(HW )は γ5 と交換す

るため、左辺は 2
a (γ5+sgn(HW ))となる。一方、右辺は aDovγ5Dov = 1

a (1+γ5sgn)γ5(1+γ5sgn) =

1
a (γ5+sgn)2 = 1

a (1+sgn2+2γ5sgn) である。ユニタリ性 sgn2 = 1 より、これは左辺と一致する。
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これを Ginsparg-Wilson (GW) 関係式 と呼ぶ。右辺の O(a) の項は格子アーティファクトで

あり、連続極限 (a → 0) では通常のカイラル対称性 {D, γ5} = 0 に回帰する。

2.2 Exact Chiral Symmetry on the Lattice

Lüscher (1998) は、演算子 D が GW関係式を満たすとき、格子作用は以下の「修正されたカ

イラル変換」に対して厳密に不変であることを示した。

δψ = iϵγ5
(
1− a

2
D
)
ψ

δψ̄ = iϵψ̄
(
1− a

2
D
)
γ5

この変換による作用の変化 δS = ψ̄
(
Dγ5(1− a

2D) + (1− a
2D)γ5D

)
ψ は、GW 関係式を用いる

と厳密にゼロとなる。つまり、GW関係式を満たすフェルミオン（GWフェルミオン）は、格子

上で定義可能な「厳密なカイラル対称性」を持つ。

3 Overlap Fermions

3.1 Neuberger’s Construction

GW関係式の一般解として、Neuberger (1998) は Overlap Dirac演算子 を提案した。これ
は、カイラル対称性を破っているがダブラーを含まない演算子（典型的にはWilson Dirac演算子

DW）を出発点とし、そのエルミート部分 HW = γ5DW の符号関数を用いて構成される。

Dov =
1

a
(1 + γ5sgn(HW ))

ここで sgn(H) は行列符号関数である。

sgn(H) = H(H2)−1/2 =
∑

i

sgn(λi) |ui⟩ ⟨ui|

3.2 Proof of GW Relation

Overlap演算子が GW関係式を満たすことは容易に示せる。定義より

γ5Dov =
1

a
(γ5 + sgn(HW ))

これより γ5Dov+Dovγ5 = 2
aγ5+

1
a (sgn(HW )+γ5sgn(HW )γ5)となるが、sgn(HW )は γ5 と交換す

るため、左辺は 2
a (γ5+sgn(HW ))となる。一方、右辺は aDovγ5Dov = 1

a (1+γ5sgn)γ5(1+γ5sgn) =

1
a (γ5+sgn)2 = 1

a (1+sgn2+2γ5sgn) である。ユニタリ性 sgn2 = 1 より、これは左辺と一致する。

4

このO(a)変形カイラル対称性はOnsite chiral symmetryではないので，
Nielsen-Ninomiyaの定理には抵触しない！

格⼦上の厳密カイラル対称性：Ginsparg-Wilson relation



Overlap fermion と Ginsparg-Wilson関係式

これを Ginsparg-Wilson (GW) 関係式 と呼ぶ。右辺の O(a) の項は格子アーティファクトで

あり、連続極限 (a → 0) では通常のカイラル対称性 {D, γ5} = 0 に回帰する。

6.2 Exact Chiral Symmetry on the Lattice

Lüscher (1998) は、演算子 D が GW関係式を満たすとき、格子作用は以下の「修正されたカ

イラル変換」に対して厳密に不変であることを示した。

δψ = iϵγ5
(
1− a

2
D
)
ψ

δψ̄ = iϵψ̄
(
1− a

2
D
)
γ5

この変換による作用の変化は GW関係式を用いると厳密にゼロとなる。つまり、GW関係式を満

たすフェルミオン（GWフェルミオン）は、格子上で定義可能な「厳密なカイラル対称性」を持つ。

7 Overlap Fermions

7.1 Neuberger’s Construction with Negative Mass

GW関係式の一般解として、Neuberger (1998) は Overlap Dirac演算子 を提案した。これ
は、カイラル対称性を破っているがダブラーを含まない演算子（Wilson Dirac演算子 DW）を出

発点とし、そのエルミート部分 HW = γ5DW の符号関数を用いて構成される。

Dov =
1

a
(1 + γ5sgn(HW ))

ここで重要な点は、カーネルとして用いる DW の質量パラメータ m0 の設定である。Overlap演

算子が非自明なトポロジー（指数定理を満たすゼロモード）を持つためには、DW がトポロジカル

相にある必要がある。具体的には、m0 は以下の負質量領域に設定されなければならない。

−2 < m0 < 0 (typically m0 = −1)

この領域において DW は物理モード付近で負の質量、ダブラー付近で正の質量を持つため、符号

関数 sgn(HW ) がそれらを区別し、正しいカイラルフェルミオンが射影される。逆に m0 > 0 の領

域では、物理モードもダブラーと同様に扱われて消失してしまう。
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑

X

(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑

X

(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ ̸=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ ̸=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),

MV = ∑
µ

Cµ , MT = ∑
perm.

∑
sym.

CµCν , MA = ∑
perm.

∑
sym.

∏
ν

Cν , MP = ∑
sym.

4

∏
µ=1

Cµ , (2.5)

3

m

-2/a < m < 0 

ν = 1    

Domain-wall fermion : gapless mode emerging at boundary 
between ν=0 and ν=1 SPTs, where ’t Hooft anomaly cancels.

Wilson fermion as U(1) SPT states

Topological # of SPT    ~   sum of chiral charges of species with m < 0 

Kimura (2015)

Aoki phase
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,
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trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.
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[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
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by
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X

)]
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.
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}
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i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ ̸=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ ̸=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),
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Figure 1: Free Wilson Dirac spectrum. The degenerate spectrum of 16 species in naive fermions are split
into five branches with 1, 4, 6, 4 and 1 flavors.

the Wilson term [3]. The Wilson fermion action is given by,

SW = ∑
n,µ

ψ̄nγµDµψn + ∑
n

m0ψ̄nψn + r ∑
n,µ

ψ̄n(1−Cµ)ψ̄n, (2.1)

where Dµ ≡ (T+µ −T−µ)/2, Cµ ≡ (T+µ +T−µ)/2 with T±µψn = Un,±µψn±µ . The free Dirac spec-
trum for the Wilson fermion is schematically depicted in Fig. 1. The degeneracy of 16 modes in
naive fermions is lifted into 5 branches, to which 1, 4, 6, 4 and 1 flavors correspond. We emphasize
the three important properties of the Wilson fermion, γ5-hermiticity, hypercubic symmetry and the
lattice Laplacian form ∼ a

∫
dx4ψ̄x∆ψx +O(a2). These can be criterions for generalization.

Now we briefly look into flavor-chiral symmetry of naive and Wilson fermions by following
[10]. As well-known the massless naive action possesses U(4)×U(4), which is regarded as rem-
nant of the continuum flavor-chiral symmetry group for 16 flavors. This U(4)×U(4) is given
by

ψn → exp
[
i∑
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(
θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
ψn , ψ̄n → ψ̄n exp

[
i∑
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(
−θ (+)

X Γ(+)
X +θ (−)

X Γ(−)
X

)]
.

(2.2)
Here, Γ(+)

X and Γ(−)
X are site-dependent 4×4 matrices:

Γ(+)
X =

{
14 , (−1)n1+...+n4γ5 , (−1)ňµ γµ , (−1)nµ iγµγ5 , (−1)nµ,ν

i [γµ ,γν ]
2

}
, (2.3)

Γ(−)
X =

{
(−1)n1+...+n414 , γ5 , (−1)nµ γµ , (−1)ňµ iγµγ5 , (−1)ňµ,ν

i [γµ ,γν ]
2

}
, (2.4)

where ňµ = ∑ρ ̸=µ nρ , nµ,ν = nµ +nν and ňµ,ν = ∑ρ ̸=µ,ν nρ . See [10] for details. Quark condensate
or quark mass break this U(4)×U(4) down to the U(4) vector subgroup Γ(+)

X . We call Γ(+)
X as

vector-type group and Γ(−)X as axial-type group. In the presence of the Wilson term this U(4)×
U(4) invariance is broken down to the U(1) invariance under 14 in Eq.(2.3). This generator is
vector-type, which means that the Wilson fermion loses all the axial(chiral) symmetry.

Now we go on to the main theme “flavored-mass terms". In [3], it was shown that there are
four nontrivial types of flavored masses for naive fermions, which satisfy γ5-hermiticity, possess
the hypercubic symmetry and becomes covariant Laplacian with proper mass shifts. The four types
are classified based on the number of transporters, where we name the 1-link case as vector (V),
2-link as tensor (T), 3-link as axial-vector (A) and 4-link as pseudo-scalar (P),
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µ
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5th dimension

Wilson and Domain-wall fermion are ahead of their time!



Overlap fermion と Ginsparg-Wilson関係式
4 Dirac Spectrum and Topology

4.1 The GW Circle

GW 関係式は、Dirac 演算子の固有値分布に対して強力な幾何学的制約を課す。D |λ⟩ = λ |λ⟩

とし、γ5-Hermiticity D† = γ5Dγ5 を用いて関係式を変形すると、

D +D† = aD†D

が導かれる。これを固有値 λ で書き下すと、

λ+ λ∗ = a|λ|2 ⇐⇒ 2Reλ = a(Reλ2 + Imλ2)

これを整理すると以下の円の方程式となる。
(
Reλ− 1

a

)2

+ (Imλ)2 =

(
1

a

)2

すなわち、GWフェルミオンのスペクトルは、複素平面上で中心 (1/a, 0)、半径 1/a の円周上に

分布しなければならない。これを Ginsparg-Wilson円 と呼ぶ。

• 物理モード: 原点 λ = 0 付近のモード。

• ダブラー: 円上の対蹠点 λ = 2/a 付近のモード（質量がカットオフオーダーとなり分離さ

れる）。

4.2 Zero Modes and Index Theorem

連続理論における Atiyah-Singerの指数定理は、Dirac演算子のゼロモードのカイラリティの差

が、ゲージ場のトポロジカルチャージ Q に等しいことを主張する。

Ind(D) ≡ n+ − n− = Q

格子上で GW 関係式が成立する場合、この指数定理が厳密に成り立つことが証明されている

（Hasenfratz-Lalien-Niedermayer, 1998）。

Tr(γ5) =
∑

λ

⟨λ| γ5 |λ⟩ = a
∑

λ

λ

2
⟨λ|λ⟩

GW関係式を用いると、非ゼロモード（λ ̸= 0, 2/a）に対しては ⟨λ| γ5 |λ⟩ = 0 となり、ゼロモー

ドのみが寄与として残る。これにより、格子シミュレーションにおいてもトポロジーの効果を正し

く取り入れることが可能となる。
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局所性の問題7.2 The Locality Problem

Overlap演算子における最大の懸念事項は「局所性（Locality）」である。通常の格子作用（Wilson

等）は、有限範囲のホッピングしか持たない「超局所性（Ultra-locality）」を満たす。一方、Overlap

演算子は符号関数（逆平方根 1/
√
H2

W）を含むため、原理的には全格子点間にホッピングを持つ

非局所的な演算子となる。

しかし、Hernández, Jansen, Lüscher (1999) は、カーネルとなる HW がギャップを持つ（ゼ

ロ固有値を持たない）限り、Overlap演算子は指数関数的局所性（Exponential Locality）を満た

すことを証明した。
|Dov(x, y)| ≤ C exp(−γ|x− y|)

前述の負質量領域（m0 ≈ −1）においては、Wilson演算子 HW は十分に大きなギャップを持つ

ため、この局所性は保証される。したがって、Overlapフェルミオンは厳密な意味での局所作用で

はないが、物理的に許容されるクラス（Local Field Theory）に属する。

8 Dirac Spectrum and Topology

8.1 The GW Circle

GW 関係式は、Dirac 演算子の固有値分布に対して強力な幾何学的制約を課す。D |λ⟩ = λ |λ⟩

とし、関係式を変形すると、固有値 λ は以下の円の方程式を満たす。
(
Reλ− 1

a

)2

+ (Imλ)2 =

(
1

a

)2

すなわち、スペクトルは複素平面上で**中心 (1/a, 0)、半径 1/a の円周上**に分布する。負質量

m0 を持たせた場合、物理モードは原点 λ = 0 付近に、ダブラーモードは対蹠点 λ = 2/a 付近に

マッピングされ、両者は円周上で明確に分離される。

8.2 Zero Modes and Index Theorem

連続理論における Atiyah-Singerの指数定理 Ind(D) = Q は、格子上で GW関係式が成立する

場合に厳密に再現される（Hasenfratz-Lalien-Niedermayer, 1998）。

Ind(Dov) ≡ Tr(γ5(1−
a

2
Dov)) = Q

8



Overlap fermionの格⼦上での近似

The final issue is, what is an explicit formula for a Dirac operator which obeys the
Ginsparg-Wilson relation? One last definition gives a clue: Because the eigenvalues of D lie
on a shifted circle, one can write D as

D =
r0
a
[1 + V ] (2.18)

where V is a unitary operator. We can choose V to be a function of some ordinary, nonchiral,
undoubled massless lattice Dirac operator d (referred to hereafter as the “kernel” Dirac
operator) and a mass term equal to −r0/a. The universally-used choice of function is the
overlap action of Refs. [7, 8]

D =
r0
a

[

1 +
d− r0/a

√

(d− r0/a)†(d− r0/a)

]

(2.19)

or, introducing the Hermitian operator h(m) = γ5(d+m),

D =
r0
a
[1 + γ5ϵ[h(−r0/a)]] (2.20)

where ϵ(h) is the matrix step function, ϵ(h) = h/
√
h2. The choice of coefficients is made for

convenience so that the small eigenvalue limit the overlap operator has the same normaliza-
tion as the kernel operator D ≃ d ≃ i∂/ .

All magical things have a high price. Here, the problem is that V is not restricted to
extend over a finite number of lattice sites. Said another way, it is not ultralocal. This
means that the matrix representation of D is not sparse. It is local: the size of V (|x− y|)
dies exponentially with the separation |x−y|, V ∝ exp(−C|x−y|). Here |x−y| is a distance
measured in lattice units; the physical distance is r = a|x−y| and V ∝ exp(−Cr/a) vanishes
when r ≫ a. The value of C depends on r0 and the choice of parameterization for d.

This takes us (after a brief aside) to Sec. IV, which is a discussion of practical consider-
ations: how to construct the overlap D (and related quantities) as efficiently as possible.

III. THE OVERLAP ACTION BEGINNING IN FIVE DIMENSIONS

We pause to return to the discussion of chiral fermions in five dimensions. Let us re-state
some conventions: the coordinate in the fifth dimension is s, and the five-dimensional Dirac
operator D5 is written in terms of a four dimensional Dirac operator D4 and a mass function
M(s) as

D5 = D4 + γ5∂5 −M(s). (3.1)

Since the situation does not depend on a particular form for M , we will replace it by a
wall with Dirichlet boundary conditions at s = 0. We restrict ourselves to s > 0 and take
M(s) = M in that domain. In this simplified case there is a left-handed zero mode pinned
to the s = 0 surface and its wave function falls away like exp(−Ms). Now we find the
four dimensional effective field theory of the massless mode. We can do this by finding the
propagator G(x, s1; y, s2) between two sites in the five-dimensional manifold and evaluate
our result at s1 = s2 = 0 (since that is where the massless mode is confined). The Green’s
function is the solution to the equation

D5G(x, s1; y, s2) = δ4(x− y)δ(s1 − s2) (3.2)
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・Chebyshev approximation

Again, h(−r0) = γ5(d − r0) is a kernel Hermitian Dirac operator and ϵ(x) = x/
√
x2 is the

matrix step function. Evaluating ϵ(h) is the real bottleneck to using the overlap operator in
a simulation.

One can approximate ϵ(h) either as a polynomial or as a rational function in h. A
polynomial approximation is a power series

ϵ(h) = hsN(h
2) = h

N
∑

n=0

cnh
2n, (4.2)

where sN(x) is an approximation to 1/
√
x. This can be (and has been) implemented as a

series expansion in Chebychev polynomials Tn(x),

sN(x) =
∑

n

cnTn(x). (4.3)

Diagonal rational functions are more efficient. In this case we write

ϵN(h) = h

∑

anh2n

∑

bnh2n

= h

[

c0 +
N
∑

j=1

cj
h2 + dj

]

, (4.4)

where the c’s and d’s are related to the a’s and b’s. The second expression in Eq. 4.4 is
the one which is always used, since the sum of inverses can be computed using a multishift
conjugate gradient algorithm.

For real x, any approximate ϵN (x) will have a range 0 < xmin < x < xmax where it works
reasonably well, but outside that range, it will fail. These end points can be adjusted by a
multiplicative change of scale, but the lower end point is never zero. In order that ϵN (x) is
to be a good approximation to the ϵ(h) we need for the overlap, it must be that the good
interval contains all the eigenvalues of h from the smallest (absolute value) |λmin| to largest
|λmax|. The largest eigenvalue is bounded by the lattice cutoff, so in typical simulations, its
value is very stable. As usual, the smallest eigenvalue is the problematic one. Indeed, in a
dynamical simulation, λmin will cross the origin when the topology of the gauge configuration
changes, so one will always encounter arbitrarily small values of λ.

The cure to this problem is to isolate the small eigenvalue eigenmodes and include their
contributions exactly. Find them and sort the eigensolutions h(−r0)|j⟩ = λj|j⟩ in order
from the smallest |λ0| to largest |λmax|. Then apply ϵ(h) to a vector |ψ⟩ as follows:

ϵ(h)|ψ⟩ = ϵN(h)

(

|ψ⟩ −
J
∑

j=1

|j⟩⟨j|ψ⟩

)

+
J
∑

j=1

|j⟩ϵ(λj)⟨j|ψ⟩. (4.5)

Now ϵN (h) has to be a good approximation only for the range |λJ+1| to |λmax|.
Clearly, some tuning is involved to find an optimum choice of parameters. Eigenfunctions

and eigenvalues of h have to be found; this is done by finding a set of low-lying spectrum
of h2 (which is bounded from below) and then diagonalizing h in the eigenbasis. This is
expensive and the cost grows as more and more eigenmodes are needed. Then one must
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・Zolotarev approximation

find a good combination of cj, dj and N in Eq. 4.4 and J in Eq. 4.5 to insure that the step
function is being evaluated to some desired accuracy and at minimum cost.

This can be tested in simulation in several ways. One can ask whether D or H have chiral
zero modes (zero eigenvalue at the level of desired precision) on sample gauge configurations,
such as ones with an isolated instanton. One can ask the same question, but on gauge fields
in the ensemble one hopes to use for physics. Generally, this is a more stringent test, since
the rougher the gauge configuration, the harder it is for an approximation to the overlap
to capture its properties. Finally, one can check that one’s results encode chiral symmetry,
either by checking that the squared pion mass vanishes at zero bare quark mass, or by
observing the absence of additive mass renormalization via a measurement of the Axial
Ward Identity fermion mass involving the axial current and the pseudoscalar current,

∂t
∑

x⃗

⟨A0(x⃗, t)O(0, 0)⟩ = 2amAWI
q

∑

x⃗

⟨P a(x⃗, t)O(0, 0)⟩ . (4.6)

The latter choice is easier to implement and interpret.
Two examples of ϵN ’s are the polar expression and the Zolotarev approximation. The

polar expression [referring to Eq. (4.4)] has c0 = 0 and

ck =
1

N cos2
[

π(k − 1
2)/2N

] ; dk = tan2

[

π(k −
1

2
)/2N

]

(4.7)

It is actually the power series expansion of the approximate step function used by the
ordinary finite-fifth-dimension domain wall fermion. In my experience, it is not robust
enough to use in most situations.

The Zolotarev formula represents the state of the art. Referring readers to the mathe-
matical literature (see [10, 11]) for its derivation, I simply present the recipe for its imple-
mentation. The coefficients are defined in terms of the elliptic integrals cel, cn, sn, and dn,
which I will list due to the multitude of conventions (I am following those of Ref. [12]): The
approximate step function is

ϵN(x) = x
N
∑

ℓ=1

bℓ
x2 + c2ℓ−1

. (4.8)

For x ∈ (xmin, xmax) define κ = xmin/xmax; κp = cel(κ, 1, 1, 1); and u = ℓκp/(2N). Then the
partial fraction coefficients are

cℓ =

[

sn(u, κ2)

cn(u, κ2)

]2

x2
min

bℓ =

∏N−1
i=1 (c2i − c2ℓ−1)

∏N
i=1;i ̸=ℓ(c2i−1 − c2ℓ−1)

. (4.9)

The elliptic integrals are

cel(k, p, a, b) =

∫ ∞

0

a + bx2

(1 + px2)
√

(1 + x2)(1 + k2x2)
dx

y = sn(u, k)

u =

∫ sn

0

dy
√

(1− y2)(1− k2y2)
(4.10)
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格⼦上でSign関数εを有理関数で近似する必要がある！
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Figure 3: Eigenvalue spectra of all operators considered in 2D with cSW=0.
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・Brillouin kernel (hypercubic kernel)Durr, Koutsou (11)(12)     cf.)Bietenholtz (00)◆Brillouin fermion
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より良いOverlap kernel
・Better dispersion relation ・Locality of overlap operator

・Good scaling in c mass region
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Figure 5: Free-field dispersion relations of all operators considered in 2D, where |p|max=π/a.
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Figure 21: Localization of the ρ=1 overlap operator with the standard Wilson kernel (left) or
the new Brillouin kernel (right) on a free 484 lattice, for four directions of the separation.

number, in particular with a bit of link smearing and after O(10) eigenmodes are projected.
This allows for a lower degree polynomial or rational representation of the sign function.

7.5 Comparing the locality of the resulting overlap actions

The locality of the overlap action with standard Wilson kernel was first studied in [41]. In [46]
it was shown that a nearly chiral (but still ultralocal) kernel can significantly improve the
coordinate-space locality of the resulting overlap action. In [42, 43] it was shown that even
a slight modification through some link-smearing can lead to a considerable improvement.
Therefore, one may hope that trading the Wilson kernel for the Brillouin kernel leads to a
noticeable improvement of the locality of the overlap operator.

The localization of the overlap made from the Wilson or the Brillouin kernel is shown for
a 484 lattice in the free field case in Fig. 21. The Frobenius norm of D(x, y) is plotted as a
function of the Euclidean distance d2 = ||x−y||2. Evidently, the Brillouin kernel diminishes the
anisotropy effects and makes the operator fall off at about twice the rate as before.

8 Summary

We have introduced an ultralocal single-flavor lattice Dirac operator, based on the gauge covari-
ant versions of ∇iso and △bri in (14). Relative to the Wilson operator its eigenvalue spectrum
is more Ginsparg-Wilson like (cf. Fig. 22), and its dispersion relation is more continuum-like8.
As species doubling and global anomalies depend only on topological features of the dispersion
relation [48, 49], from the conceptual viewpoint this is a Wilson-like fermion.

When combined with some link smearing and clover improvement, our action was found to
show good scaling of decay constants even in the physical charm region, and we expect that
the near-agreement between perturbative and non-perturbative improvement coefficients found
with the Wilson operator [30, 50, 51] carries over to this action, too. It appears that lattice

8A similar strategy has been adopted for staggered fermions in [47].
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Wilson kernel Brillouin kernel

     → small         → small

Figure 12: Decay constants Fπ (top), Fs̄s (middle), Fc̄c (bottom) in r0 units versus αa (left)
and a2 (right). Open symbols indicate the bare values, filled symbols include the 1-loop ZA.

is already close to 1 in the range of couplings where we have data, and it approaches 1 as a → 0.

23

Brillouin

Wilson

Brillouin

Figure 6: Dispersion relations for the pseudoscalar (left) and vector (right) meson with ss̄ (top),
sc̄ (middle), cc̄ (bottom) quark content. The black line shows the relativistic E2 = p2 +M2.
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Figure 14: Fit of the mixed αa plus a2 ansatz (24) to the ratio Fc̄c/Fs̄s with 4 (left) or 5 (right)
lattice spacings included.

contribution in αa and a2 at accessible lattice spacings. Still, to the best of our knowledge,
this is the first figure which indicates that, for a tree-level improved operator with some link-
smearing, the pure a2 hypothesis might be closer to the truth than the (formally correct) pure
αa hypothesis. Of course, with infinitely precise data one could separate the two contributions.
To see how far we are from this ideal world, we try a fit of the ratio Fc̄c/Fs̄s with the ansatz

Fc̄c/Fs̄s = d0 + d1α(a)a+ d2a
2 (24)

giving results shown in Fig. 14. The fitted d1, d2 of the Brillouin operator are significantly
smaller than those of the Wilson operator. Also by looking at the fits one would say that the
Brillouin data alone leave little doubt that the correct continuum value is somewhere near 1.85,
while with the Wilson data alone this is far from obvious.

6.4 Comparing the 1/nBiCGstab distributions at fixed r0Mπ

In quenched QCD with Wilson fermions so-called exceptional configurations (on which the
massive Dirac operator Dm could not be inverted) hindered the approach to light quark masses.
In full QCD the functional measure suppresses configurations on whichDm has near-zero modes.
Still, the issue persists in the form of instabilities in the HMC evolution.

In [39] it was shown that the stability of these simulations is linked to the distribution of
the lowest eigenvalue of D†

mDm. The latter is roughly Gaussian distributed, and the simulation
is deemed safe as long as the center of the distribution is at least four standard deviations
away from zero. The BMW collaboration noticed that the smallest eigenvalue of D†

mDm is
directly related to the number of iterations in the inversion, and used the inverse iteration
count 1/nCG in the monitoring [40]. In Fig. 15 we present 1/nBiCGstab for either operator at the
values (r0Mπ)2=1.56 and 0.56 (Mπ∼500MeV and 300MeV). In either case an inversion with
the Brillouin operator requires about 60% of the forward applications7 of the Wilson operator.

7For fixed Mπ the smallest eigenvalues of the two A = D†
mDm are approximately equal, while the largest

eigenvalue is near 2.52 for the Brillouin operator and near 7.52 for the Wilson operator. Since nCG ∝
√

CN(A)
one would expect the relative iteration count to be around 1/3 for CG and around 1/

√
3 ≃ 0.6 for BiCGstab.
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NNを⽤いてGW関係式を厳密に満たす他の格⼦カイラ
ルフェルミオン，現実的にはより良いOverlap kernel

を⾒つけたい！
つまりある対称性を満たす演算⼦をNNで作りたい．



⽅法論：PINN的⼿法

2. 並進対称性 (Translational Invariance)

3. エルミート性 (Hermiticity)

4. カイラル対称性 (Chiral Symmetry)

格子 QCD の数値計算において広く用いられるWilson フェルミオンは，ダブラーを除去するた
めに意図的にカイラル対称性を破る質量項（Wilson項）を導入する手法である．

DW (k) =
∑

µ

[iγµ sin kµ + r(1− cos kµ)]

ここで r はWilsonパラメータ（通常 r = 1）である．この項により，k = 0（物理モード）では質
量ゼロ，k = π（ダブラー）では 2r の質量を持ち，ダブラーは連続極限で分離される．しかし，代
償として {DW , γ5} ̸= 0 となり，カイラル対称性は明示的に破れる．

3.2 Overlap Fermion and Ginsparg-Wilson Relation

格子上で「修正された形でのカイラル対称性」を保つ条件として，Ginsparg-Wilson (GW)

関係式が知られている．
Dγ5 + γ5D = aDγ5D

ここで a は格子間隔である（以下，特に断らない限り a = 1 の単位系を用いる）．この関係式を満
たす演算子 D の厳密解の一つが Overlapフェルミオン である．

Dov = 1 + γ5sgn(HW ), HW = γ5DW

Overlap演算子は厳密なカイラル対称性とトポロジー（指数定理）を持つ理想的なフェルミオンで
あるが，巨大行列の符号関数 sgn(HW ) を計算する数値コストが極めて高い（多項式近似や有理関
数近似が必要）．本研究の目的は，この複雑な行列演算をニューラルネットワークによる関数近似
で代替・構築することである．

4 Methodology: Automatic Construction

4.1 Network Architecture: Direct Learning

本研究では、運動量空間における Dirac演算子 D(k) のカーネルを、ニューラルネットワークを
用いてゼロから直接構築するDirect Learning（直接学習）アプローチを採用する．これは演算
子の全成分をニューラルネットワークの出力として定義する手法である．

5

Input: x = (sin k1, sin k2,MW (k)) ∈ R3

Model: MLP with 3 hidden layers (256 units each), Tanh activation

Output: Dθ(k) = i
∑

µ

γµVµ(k) + IM(k) ∈ C2×2 (4)

入力としてWilson質量項 MW (k) = m0 + r
∑

(1 − cos kµ) を含めることで、トポロジカル相転
移に必要な質量依存性は確保しつつ、出力の関数形はWilson演算子に縛られず、ネットワークが
自由に探索・決定できる構造となっている．

4.2 Loss Function Design

ニューラルネットワークの学習は、教師データ（正解の Overlap演算子）を一切与えず、以下の
物理的制約のみを損失関数として課すことで行う．

4.2.1 1. Ginsparg-Wilson Loss (Symmetry)

演算子が GW関係式を満たすことを要請する．これは幾何学的には、固有値スペクトルが複素
平面上の中心 (1, 0)，半径 1 の円周上に乗ることに対応する．

LGW =
1

Nk

∑

k

∥{Dθ, γ5}−Dθγ5Dθ∥2 (5)

4.2.2 2. Strict Pinning for All Doublers

物理的に健全なフェルミオン場を得るためには、物理モードと全てのダブラーモードが明確に分
離されている必要がある．本手法では、以下の 4点すべての挙動を厳密に制御（Pinning）する．

• 物理モード (k = 0): 質量ゼロを実現するため D(0) = 0 を要請．
• 最重ダブラー (k = (π, π)): 無限大質量に対応する D(π, π) = 2I を要請．
• 中間ダブラー (k = (π, 0), (0, π)): これらも同様に D = 2I へ固定する．

この全ダブラー制御により、中間的な運動量領域におけるスペクトルの不正な挙動や、符号関数の
近似精度の悪化を未然に防ぐ．

4.2.3 3. Locality Loss via FFT

Overlap演算子は実空間において指数関数的な局所性（Exponential Locality）を持つ必要があ
る．学習プロセス内で、運動量空間のカーネル D(k) を逆フーリエ変換（FFT）して実空間配位
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4.2 Network Architecture: Residual Learning

学習の効率化と安定化のため，ゼロから学習するのではなく，Wilson演算子からの補正項を学
習する Residual Learning（残差学習） の形式を採用した．

Input: x = (sin k1, sin k2,MW (k))

Model: Out(k) = NNθ(x)

Output: Dθ(k) = DW (k) + Out(k)

ここで MW (k) = m0 + r
∑

µ(1− cos kµ) はWilson質量項である．
ネットワーク詳細設定:

• 構造: 全結合ニューラルネットワーク (MLP)

• 層構成: Input(3) → Linear(256) → Tanh → Linear(256) → Tanh → Linear(256) →
Tanh → Linear(3)

• 隠れ層: 3層，各 256ユニット．
• 初期化: 最終層の重みとバイアスをゼロ初期化（学習初期は完全にWilson演算子）．

この Residual構造により，学習初期からトポロジカルな性質（大まかな巻き数）が維持され，局
所解へのスタックを防ぐことができる．

4.3 Loss Function Design

教師データ（正解のOverlap演算子）は一切与えず，物理的要請のみを損失関数として定義する．

4.3.1 Ginsparg-Wilson Loss (Symmetry)

GW関係式を満たすことを要請する．これは幾何学的には，固有値スペクトルが複素平面上の中
心 (1, 0)，半径 1 の円周上に乗ることに対応する（a = 1の場合）．

LGW =
1

Nk

∑

k

∥{Dθ(k), γ5}−Dθ(k)γ5Dθ(k)∥2

4.3.2 Pole Pinning Loss (Boundary Condition)

物理的に正しいフェルミオンであるために，特定の運動量における極（ゼロ点とポール）を固定
する．

• 物理モード (k = 0): 質量ゼロ．D(0) = 0．
• ダブラー (k = π): 無限大質量（カットオフ）．GW円上では対蹠点である D(π) = 2 に対
応する．

Lpin = ∥Dθ(0)∥2 + ∥Dθ(π)− 2I∥2

6
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Input: x = (sin k1, sin k2,MW (k)) ∈ R3

Model: MLP with 3 hidden layers (256 units each), Tanh activation

Output: Dθ(k) = i
∑

µ

γµVµ(k) + IM(k) ∈ C2×2 (4)

入力としてWilson質量項 MW (k) = m0 + r
∑

(1 − cos kµ) を含めることで、トポロジカル相転
移に必要な質量依存性は確保しつつ、出力の関数形はWilson演算子に縛られず、ネットワークが
自由に探索・決定できる構造となっている．

4.2 Loss Function Design

ニューラルネットワークの学習は、教師データ（正解の Overlap演算子）を一切与えず、以下の
物理的制約のみを損失関数として課すことで行う．

4.2.1 1. Ginsparg-Wilson Loss (Symmetry)

演算子が GW関係式を満たすことを要請する．これは幾何学的には、固有値スペクトルが複素
平面上の中心 (1, 0)，半径 1 の円周上に乗ることに対応する．

LGW =
1

Nk

∑

k

∥{Dθ, γ5} −Dθγ5Dθ∥2 (5)

4.2.2 2. Strict Pinning for All Doublers

物理的に健全なフェルミオン場を得るためには、物理モードと全てのダブラーモードが明確に分
離されている必要がある．本手法では、以下の 4点すべての挙動を厳密に制御（Pinning）する．

• 物理モード (k = 0): 質量ゼロを実現するため D(0) = 0 を要請．
• 最重ダブラー (k = (π, π)): 無限大質量に対応する D(π, π) = 2I を要請．
• 中間ダブラー (k = (π, 0), (0, π)): これらも同様に D = 2I へ固定する．

この全ダブラー制御により、中間的な運動量領域におけるスペクトルの不正な挙動や、符号関数の
近似精度の悪化を未然に防ぐ．

4.2.3 3. Locality Loss via FFT

Overlap演算子は実空間において指数関数的な局所性（Exponential Locality）を持つ必要があ
る．学習プロセス内で、運動量空間のカーネル D(k) を逆フーリエ変換（FFT）して実空間配位
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D(r) を求め、遠距離成分に対して指数関数的なペナルティを課す．

Lloc =
∑

r

∥D(r) · (eαr − 1)∥2 (α ≈ 0.8) (6)

この項により、理論的に保証された局所性をニューラルネットワークに強制的に学習させ、非局所
的なノイズの混入を排除する．

4.3 Optimization Details

• Loss Weights: 対称性と局所性を最優先し、wGW = 100, wloc = 1.0, wpin = 10 と設定．
• Optimizer: Adam (lr = 0.005) を使用．
• Scheduler: Cosine Annealing (Tmax = 8000) により、学習終盤での収束精度を高める．
• Domain Randomization: 入力質量 m0 をトポロジカル相内（m0 ∈ [−1.6,−0.4]）でラ
ンダムに変動させ、あらゆる質量パラメータに対して頑健な演算子を学習させる．

5 Results: Verification of Constructed Operator

5.1 Eigenvalue Spectrum & Sign Function

本手法により学習された演算子 Dθ の固有値分布は、複素平面上のGW円（中心 (1, 0)、半径 1）
上に極めて高精度に収束した．また、得られた演算子から有効的な符号関数 ϵeff(λ) = γ5(Dθ − 1)

を再構成したところ、4点すべてのダブラーを厳密に制御した効果により、物理モード（負エネル
ギー）とダブラー（正エネルギー）の間で急峻に切り替わる理想的な階段関数が得られた．これは
符号関数の不連続性がニューラルネットワークによって適切に表現されていることを示す．

5.2 Spectral Flow and Topology

学習した演算子のトポロジカルな性質を検証するため、実空間格子上で U(1) ゲージ場（トポロ
ジカルチャージ Q = 1）を導入し、Spectral Flowを計算した．

• 結果: トポロジカル相（−2 < m0 < 0）において、固有値がゼロ付近に滞留する「ゼロモー
ド・プラトー」が明瞭に観測された．

• 物理的解釈: ゼロモードは厳密な E = 0 ではなく、±ϵ のペアにわずかに分裂している．こ
れは、自由場で学習した係数を単純にゲージ化した（Naive Gauging）ことによる GW関
係式の破れと、カイラル対称性（C-symmetry）によるペアリング要請の結果である．しか
し、バルクモードからは明確に分離しており、指数定理に対応するトポロジカルな性質は正
しく保持されている．
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<latexit sha1_base64="zStsl61N7c3hzoVn2obQ8i7JVIo="></latexit>

L = wGWLGW + wpinLpin + wlocLloc

損失関数



Results：Dirac固有値分布

4.3.3 Total Loss and Optimization

L = wGWLGW + wpinLpin

学習パラメータ詳細:

• 重み係数: 一般的な構成では wGW = 100.0, wpin = 1.0 と設定し，対称性を優先させた．
• Optimizer: Adam (lr = 0.005)

• Scheduler: Cosine Annealing (Tmax = 8000)により，学習率を 0付近まで滑らかに減衰．
• Domain Randomization: ロバストな演算子を得るため，入力質量 m0 を固定せず，トポ
ロジカル相の範囲内（m0 ∈ [−1.5,−0.5]）でイテレーションごとにランダムに変動させた．

5 Results and Verification

5.1 Eigenvalue Spectrum

学習後の演算子 Dθ の固有値分布を確認したところ，初期のWilson演算子の「半月型」スペク
トルから劇的に変化し，複素平面上の (0, 0) と (2, 0) を直径とする真円に見事に収束した．これ
は，ニューラルネットワークが GW関係式を数値誤差の範囲内（Loss ∼ 10−5）で満たしているこ
とを示す．

5.2 Effective Sign Function

得られた演算子が Overlap演算子の定義 D = 1+ γ5sgn(HW ) を満たしているか確認するため，
学習された Dθ から有効的な符号関数を逆算した．

ϵeff(λ) = eig (γ5(Dθ − 1))

元のハミルトニアン HW の固有値 λ に対して ϵeff をプロットした結果，λ = 0 で急峻に ±1 が切
り替わる階段関数（Step Function）が得られた．通常の多項式近似（チェビシェフ近似等）で
見られるような Gibbs振動も最小限に抑えられており，NNが符号関数の良い近似器として機能し
ている．

5.3 Real-space Topology and Spectral Flow

学習は運動量空間で行ったが，トポロジーは大域的な性質であるため，実空間での検証が不可欠
である．

• 設定: 20 × 20 の実空間格子上に，トポロジカルチャージ Q = 1 を持つ U(1) ゲージ場を
導入．
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7• Gauging: 学習したカーネル D(k) を逆フーリエ変換し，ゲージリンク変数 Uµ(x) を付与
して実空間演算子 Dlat を構築．

• Spectral Flow: 質量パラメータ m0 を −2.5 から 0.5 まで掃引し，エルミート演算子
H(m0) = γ5Dlat(m0) の固有値フローを計算．

結果: トポロジカル相（−2 < m0 < 0）において，固有値がゼロ付近に張り付く ”Zero Mode

Plateau” が明瞭に観測された．これは Atiyah-Singer の指数定理

NL −NR = Q

を満たすゼロモード（カイラル対称なモード）が存在することの直接的な証拠である．実空間での
相互作用の打ち切り（Truncation）により，厳密なゼロではなくわずかなギャップ（±ϵ の対生成）
が見られるが，これは局所的な Overlap演算子において避けられない物理現象であり，結果の正当
性を裏付けるものである．

6 AI Rediscovers Symmetry

6.1 The Question: Can AI find the relation?

これまでは GW関係式の形（右辺 = Dγ5D）を人間が与えていた．本節では，AIが物理的要
請の整合性だけから，この関係式そのものを再発見できるか検証した．

6.2 Experimental Setup for Discovery

GW関係式の右辺を未知の関数 f(X)（ここで X = D†D）とし，多項式展開でモデル化する．

D +D† = c1(D
†D) + c2(D

†D)2 + c3(D
†D)3 + . . .

係数 {ci} を学習可能なパラメータとし，ニューラルネットの重みと同時に最適化する．

• 矛盾する制約: 「対称性を満たせ（左辺＝右辺）」と「ダブラーを消せ（D(π) = 2）」という
要請は，単純な演算子（Wilson等）では両立しない．

• カリキュラム学習 (Curriculum Learning): 学習初期は wpin = 100 程度で始め，エポッ
ク数と共に wpin → 5000 まで増大させる．これにより，AIを「自明解（D ≈ 0）」から追
い出し，非自明な解へと誘導する．

6.3 Results: Generalized GW Relation

学習の結果，係数は以下の値に収束した．

c1 ≈ 1.0, c2 ≈ finite small value, cn≥3 ≈ 0
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• Gauging: 学習したカーネル D(k) を逆フーリエ変換し，ゲージリンク変数 Uµ(x) を付与
して実空間演算子 Dlat を構築．

• Spectral Flow: 質量パラメータ m0 を −2.5 から 0.5 まで掃引し，エルミート演算子
H(m0) = γ5Dlat(m0) の固有値フローを計算．

結果: トポロジカル相（−2 < m0 < 0）において，固有値がゼロ付近に張り付く ”Zero Mode

Plateau” が明瞭に観測された．これは Atiyah-Singer の指数定理

NL −NR = Q

を満たすゼロモード（カイラル対称なモード）が存在することの直接的な証拠である．実空間での
相互作用の打ち切り（Truncation）により，厳密なゼロではなくわずかなギャップ（±ϵ の対生成）
が見られるが，これは局所的な Overlap演算子において避けられない物理現象であり，結果の正当
性を裏付けるものである．

6 AI Rediscovers Symmetry

6.1 The Question: Can AI find the relation?

これまでは GW関係式の形（右辺 = Dγ5D）を人間が与えていた．本節では，AIが物理的要
請の整合性だけから，この関係式そのものを再発見できるか検証した．

6.2 Experimental Setup for Discovery

GW関係式の右辺を未知の関数 f(X)（ここで X = D†D）とし，多項式展開でモデル化する．

D +D† = c1(D
†D) + c2(D

†D)2 + c3(D
†D)3 + . . .

係数 {ci} を学習可能なパラメータとし，ニューラルネットの重みと同時に最適化する．

• 矛盾する制約: 「対称性を満たせ（左辺＝右辺）」と「ダブラーを消せ（D(π) = 2）」という
要請は，単純な演算子（Wilson等）では両立しない．

• カリキュラム学習 (Curriculum Learning): 学習初期は wpin = 100 程度で始め，エポッ
ク数と共に wpin → 5000 まで増大させる．これにより，AIを「自明解（D ≈ 0）」から追
い出し，非自明な解へと誘導する．

6.3 Results: Generalized GW Relation

学習の結果，係数は以下の値に収束した．

c1 ≈ 1.0, c2 ≈ finite small value, cn≥3 ≈ 0

8
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ただし，ChebyshevやZolotarev程度の残留質量が⾒られる．



そもそも， NNを⽤いて，Ginsparg-Wilson関係式その
ものを⾒つけ出すことは可能か?

つまりNNによる対称性の発⾒は可能か？
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8 Discovery: NN Rediscovers Symmetry

8.1 Problem Setup: Unknown Symmetry Search

前節までは、Ginsparg-Wilson (GW) 関係式を既知の拘束条件として損失関数に組み込んでい
た。本節では、この前提を取り払い、「NNが物理的要請（極の分離と局所性）のみから、演算子が
従うべき対称性（代数関係）を自律的に発見できるか」を検証する。
具体的には、GW関係式の右辺を既知とせず、未知の関数 f(X) （ここで X = D†D）と仮定
する。

D +D† = f(D†D) (10)

この関数 f(X) を N 次の多項式でモデル化し、その係数 {cn} を NNの重みパラメータ θ と同時
に学習させる。

f(X) ≈
N∑

n=1

cnX
n = c1(D

†D) + c2(D
†D)2 + · · ·+ cN (D†D)N (11)

本研究では N = 5 と設定した。もし NNが標準的な Overlapフェルミオンを「再発見」するなら
ば、係数は c1 = 1, cn≥2 = 0 に収束するはずである。

8.2 Minimal Constraints Strategy

NNに対称性の形を一切教えずに学習させるため、損失関数には特定の解（例えば D = 2 への
固定など）への誘導を含まない「ミニマルな物理要請」のみを採用した。損失関数は以下の 3項か
らなる。

L = wrelLrel + wconstLconst + wlocLloc (12)

8.2.1 1. Symmetry Relation Loss

未知の対称性関係式が成立することを要請する項である。

Lrel =
1

Nk

∑

k

∥∥∥∥∥(D +D†)−
N∑

n=1

cn(D
†D)n

∥∥∥∥∥

2

(13)

ここで係数 {cn} も勾配法により更新される学習パラメータである。

8.2.2 2. Inequality Constraints via ReLU

最も重要な変更点は、ダブラー（非物理的極）に対する制約である。従来のように D(π,π) = 2

と固定してしまうと、その時点でスペクトルが円（GW 関係式）になることを強く示唆してしま

11
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L = wrelLrel + wconstLconst + wlocLloc (12)

8.2.1 1. Symmetry Relation Loss

未知の対称性関係式が成立することを要請する項である。
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ここで係数 {cn} も勾配法により更新される学習パラメータである。

8.2.2 2. Inequality Constraints via ReLU

最も重要な変更点は、ダブラー（非物理的極）に対する制約である。従来のように D(π, π) = 2

と固定してしまうと、その時点でスペクトルが円（GW 関係式）になることを強く示唆してしま
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Results：ダブラーのpinningを強く課した場合

• Gauging: 学習したカーネル D(k) を逆フーリエ変換し，ゲージリンク変数 Uµ(x) を付与
して実空間演算子 Dlat を構築．

• Spectral Flow: 質量パラメータ m0 を −2.5 から 0.5 まで掃引し，エルミート演算子
H(m0) = γ5Dlat(m0) の固有値フローを計算．

結果: トポロジカル相（−2 < m0 < 0）において，固有値がゼロ付近に張り付く ”Zero Mode

Plateau” が明瞭に観測された．これは Atiyah-Singer の指数定理

NL −NR = Q

を満たすゼロモード（カイラル対称なモード）が存在することの直接的な証拠である．実空間での
相互作用の打ち切り（Truncation）により，厳密なゼロではなくわずかなギャップ（±ϵ の対生成）
が見られるが，これは局所的な Overlap演算子において避けられない物理現象であり，結果の正当
性を裏付けるものである．

6 AI Rediscovers Symmetry

6.1 The Question: Can NN find the relation?

これまでは GW関係式の形（右辺 = Dγ5D）を人間が与えていた．本節では，NNが物理的要
請の整合性だけから，この関係式そのものを再発見できるか検証した．

6.2 Experimental Setup for Discovery

GW関係式の右辺を未知の関数 f(X)（ここで X = D†D）とし，多項式展開でモデル化する．

D +D† = c1(D
†D) + c2(D

†D)2 + c3(D
†D)3 + . . .

係数 {ci} を学習可能なパラメータとし，ニューラルネットの重みと同時に最適化する．

• 矛盾する制約: 「対称性を満たせ（左辺＝右辺）」と「ダブラーを消せ（D(π) = 2）」という
要請は，単純な演算子（Wilson等）では両立しない．

• カリキュラム学習 (Curriculum Learning): 学習初期は wpin = 100 程度で始め，エポッ
ク数と共に wpin → 5000 まで増大させる．これにより，NNを「自明解（D ≈ 0）」から追
い出し，非自明な解へと誘導する．

6.3 Results: Generalized GW Relation

学習の結果，係数は以下の値に収束した．

c1 ≈ 1.0, c2 ≈ finite small value, cn≥3 ≈ 0

8
これは標準的な GW関係式（c1 = 1, c>1 = 0）を主要項として再現している．特筆すべきは，少
量の c2 項（2次の補正項）が残ったことである．

6.4 Interpretation: Universality Class

なぜ NNは c2 を残したのか？

1. 一般化された対称性: 指数定理を満たすための条件は，スペクトルが物理モードとダブラー
を分離する閉曲線をえがくことであり，必ずしも真円である必要はない（Generalized GW

relation）．
2. AIの最適化戦略: 人間は数式の単純さ（c1 のみ）を好むが，NNは「Lossの最小化」を最
優先する．NNにとって，標準的な真円に固執するよりも，c2 項を使って円をわずかに歪ま
せた方が，ダブラー固定条件 (D = 2) を満たすのが容易だったと解釈できる．

この結果は，NNが教科書的な知識を再現しただけでなく，物理的に等価な普遍類（Universality

Class）の中から，より柔軟で実用的な解を独自に発見したことを示唆しており，理論探索ツール
としての PINNの可能性を示す重要な成果である．

7 Conclusion & Outlook

7.1 Summary

1. Beyond Solver: PINNの枠組みは，微分方程式を解くだけでなく，格子場の理論におけ
る複雑な演算子構築にも有効である．

2. Automatic Construction: 物理的要請（GW関係式，局所性など）を Lossとして与え
るだけで，Overlapフェルミオンを自動学習できる．

3. Data-driven Discovery: NN はデータを与えられなくても，物理制約の整合性から，
Ginsparg-Wilson関係式のような深い対称性を「再発見」・「一般化」する能力を持つ．

7.2 Future Perspectives

• Sparsityの追求: Loss関数に L1 正則化を強く課すことで，標準 Overlapよりも計算コス
トが低い（超局所的な）実用フェルミオンを発見できる可能性がある．

• 未知の理論への応用: 対称性が未知の系（符号問題がある系や，非平衡系など）において，
NNに「隠れた対称性」を探させるアプローチが期待される．
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Results：局所性を強く課した場合

学習の結果，再びc1が主要な演算⼦が得られた．しかし，全然overlapではない．．．
⼀⽅，この固有値分布は⾒覚えあり → Brillouin fermion kernel！

Brillouin fermionの再発⾒



Results：局所性を強く課した場合

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_std, der_std, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_std, der_bri, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_std, der_iso, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_til, der_std, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_til, der_bri, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_til, der_iso, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_bri, der_std, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_bri, der_bri, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_bri, der_iso, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_iso, der_std, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_iso, der_bri, csw=0

0 1 2 3

−1

0

1

2D, U(1): L=24, β=3.3

 

 

lap_iso, der_iso, csw=0

Figure 3: Eigenvalue spectra of all operators considered in 2D with cSW=0.
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学習の結果，再びc1が主要な演算⼦が得られた．しかし，全然overlapではない．．．
⼀⽅，この固有値分布は⾒覚えあり → Brillouin fermion kernel！



Results：ダブラーpinning + 局所性を課した場合

学習の結果，再びc1とc2が主要な演算⼦が得られた．
いわゆる単純なoverlapではない．
→ Brillouin fermion kernel もしくは⼀般化GW関係式を満たす演算⼦
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学習の結果，再びc1とc2が主要な演算⼦が得られた．
いわゆる単純なoverlapではない．
→ Brillouin fermion kernel もしくは⼀般化GW関係式を満たす演算⼦
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⼀般化GW関係式の再発⾒．さらに2つの項の線型結合を⽰唆．

学習の結果，再びc1とc2が主要な演算⼦が得られた．
いわゆる単純なoverlapではない．
→ Brillouin fermion kernel もしくは⼀般化GW関係式を満たす演算⼦

Results：ダブラーpinning + 局所性を課した場合

to an interesting analysis of the notion of index in lattice gauge theory[3]. This index
theorem in turn led to a new form of chiral symmetry, and the chiral anomaly is obtained
as a non-trivial Jacobian factor under this modified chiral transformation[4]. This chiral
Jacobian is regarded as a lattice generalization of the continuum path integral[5]. The
very detailed analyses of the lattice chiral Jacobian have been performed[6]-[8]. It is also
possible to formulate the lattice index theorem in a manner[9] analogous to the continuum
index theorem[10][11]. An interesting chirality sum rule, which relates the number of zero
modes to that of the heaviest states, has also been noticed[12].

In this paper we discuss a generalization of the relation (1.1), which is characterized
by a non-negative integer k. It is shown that the explicit construction of an infinite tower
of lattice Dirac operators which satisfy the index theorem is possible, but a large enough
lattice is required to accomodate a Dirac operator with a large value of k.

2 Generalized algebra and its representation

We discuss a generalization of the algebra (1.1) to the form2

γ5(γ5D) + (γ5D)γ5 = 2a2k+1(γ5D)2k+2 (2.1)

where k stands for a non-negative integer and k = 0 corresponds to the ordinary Ginsparg-
Wilson relation. When one defines

H ≡ γ5aD (2.2)

(2.1) is rewritten as
γ5H +Hγ5 = 2H2k+2 (2.3)

or equivalently
Γ5H + Γ5H = 0 (2.4)

where we defined
Γ5 ≡ γ5 −H2k+1. (2.5)

Note that both of H and Γ5 are hermitian operators.
We now discuss a general representation of the algebraic relation (2.4) following the

analysis in Appendix of Ref.[13].(In Ref.[13], the algebra was normalized as γ5(γ5D) +
(γ5D)γ5 = a(γ5D)2, but here we use the normalization (2.1) to simplify various expres-
sions.) The relation (2.4) suggests that if

Hφn = aλnφn, (φn,φn) = 1 (2.6)
2This relation is obtained from the proposal in Ref. [1],γ5D + Dγ5 = 2aDγ5αD, by choosing α as

an operator containing D itself (and thus Dirac matrices). From a view point of algebra, the original
construction in [1] contains two unknown operators and one relation. In our construction, we have a
closed algebraic relation for one unknown operator D, which allows a neat analyis of representation
in this Section. This specific algebraically closed realization ,which is characterized by a non-negative
integer, has not been discussed in Ref.[1].
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Results：総括

1.一般化された対称性：指数定理を満たすための条件は，スペクトルが物理
モードとダブラーを分離する閉曲線を描くことであり，必ずしも深淵である
必要はない． → Generalized GW relation

2. NNの最適化：「極の分離」と「局所性」を両立させる解の中で，最も安定，

かつ表現コストが低い一般化GW関係式を見つけてきたと解釈できる．

3.本結果は，NNが単なる関数近似器としてだけでなく、物理系に潜む対称性や

保存則をデータ駆動（あるいは物理制約駆動）で発見する「理論探索ツー
ル」として機能する可能性を強く示唆.



Conclusion and Discussion

これは標準的な GW関係式（c1 = 1, c>1 = 0）を主要項として再現している．特筆すべきは，少
量の c2 項（2次の補正項）が残ったことである．

6.4 Interpretation: Universality Class

なぜ NNは c2 を残したのか？

1. 一般化された対称性: 指数定理を満たすための条件は，スペクトルが物理モードとダブラー
を分離する閉曲線をえがくことであり，必ずしも真円である必要はない（Generalized GW

relation）．
2. AIの最適化戦略: 人間は数式の単純さ（c1 のみ）を好むが，NNは「Lossの最小化」を最
優先する．NNにとって，標準的な真円に固執するよりも，c2 項を使って円をわずかに歪ま
せた方が，ダブラー固定条件 (D = 2) を満たすのが容易だったと解釈できる．

この結果は，NNが教科書的な知識を再現しただけでなく，物理的に等価な普遍類（Universality

Class）の中から，より柔軟で実用的な解を独自に発見したことを示唆しており，理論探索ツール
としての PINNの可能性を示す重要な成果である．

7 Conclusion & Outlook

7.1 Summary

1. Beyond Solver: PINNの枠組みは，微分方程式を解くだけでなく，格子場の理論におけ
る複雑な演算子構築にも有効である．

2. Automatic Construction: 物理的要請（GW関係式，局所性など）を Lossとして与え
るだけで，Overlapフェルミオンを自動学習できる．

3. Data-driven Discovery: NN はデータを与えられなくても，物理制約の整合性から，
Ginsparg-Wilson関係式のような深い対称性を「再発見」・「一般化」する能力を持つ．

7.2 Future Perspectives

• Sparsityの追求: Loss関数に L1 正則化を強く課すことで，標準 Overlapよりも計算コス
トが低い（超局所的な）実用フェルミオンを発見できる可能性がある．

• 未知の理論への応用: 対称性が未知の系（符号問題がある系や，非平衡系など）において，
NNに「隠れた対称性」を探させるアプローチが期待される．
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• 実際にここで得られた演算子の有効性を詳しく調べる必要性がある．
• さらなる改善：損失関数，Optimizerなどなど．
• 一般に，対称性→演算子(作用)，理論の特質→対称性，をNNでどこまでできるか．
• 格子ハミルトン形式への応用．ハミルトン形式のGW関係式が近年重要視されており，
適切な格子フェルミオン演算子を探索する意義がある．


