Neural Mechanics:
Symmetry and Broken Conservation Laws in Deep Learning Dynamics

Q. Can we solve for complex learning dynamics?

VGG-16 on Tiny ImageNet
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Deep learning has been successtul, but it's inner-workings are still mysterious

Myriads ot design choices of the deep learning system
shapes the trajectory that the millions of parameters take during training

?
Architecture ) Optimizer
RelLU or tanh? How much weight decay?
Batch Normalization? ok How much momentum?
SoftMax? XX 0 _earning rate schedule?
XX N

Convolution? Batch-size?

Residual connection? Adaptive gradient?

/ZHI Parameter space

%

Researchers and practitioners largely depend on try & error based heuristic search.
Better understanding of the mechanism is foundational in principled exploration of the vast design space.

Q. What, it anything, can we quantitatively understand about the learning dynamics ot
state-of-the-art deep learning models driven by real-world datasets?



Q. What, it anything, can we quantitatively understand about the learning dynamics of
state-of-the-art deep learning models driven by real-world datasets?

6 6 This question is difficult because of...

1. millions of parameters

‘ 6 6 ‘ 2. compositional non-linear functions

6 6 3. discrete updates by random batches of data

Existing works have simplitied the problem by making major assumptions on the architecture...

Single Hidden Layer Linear Networks Infinitely Wide
y = Q[Z]f(g[l:x) y = olLl  pl2lgll], gl & PNUIXNI N S oo
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Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:
nonlinear dynamics of learning in deep linear neural networks. 2013. Convergence and generalization in neural networks. 2018.

David Saad and Sara Solla. Dynamics of on-line gradient descent
learning for multilayer neural networks. 1995.



VGG16 parameter dynamics combination dynamics
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Q. What, it anything, can we quantitatively understand about the learning dynamics of
state-of-the-art deep learning models driven by real-world datasets?

6 a In this work we don’t introduce simplifying assumptions

on the architecture or optimizer!

Rather we identity and solve the simpler dynamics of parameter combinations.

Training time: ¢ Training time: ¢ Training time: ¢



Q. What, it anything, can we quantitatively understand about the learning dynamics of
state-of-the-art deep learning models driven by real-world datasets?

6 6 In this work we don’t introduce simplifying assumptions

on the architecture or optimizer!

Rather we identity and solve the simpler dynamics of parameter combinations.

Our theory matches
experiment exactly!

Parameter combinations: || Wi(?) | |2
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Q. Can we solve for complex learning dynamics of real deep learning models?

\ @/// Part 1. Symmetry in the Loss Constrain Gradient and Hessian Geometries
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Symmetry Constrain Gradient and Hessian Geometries

Symmetry: A function f(f) posses a symmetry 1f 1t invariant under the action 6 — w (6, a)
of a group G on the parameter vector 6, 1.e. if f(y (0, a)) = f(0) for any (O, a).

Geometric constraints: If a function f(€) posses a differentiable symmetry, then
Gradient Hessian

aaf (l/j) — <VJC9 aal//> =0 aﬁaaf (l//) — Hf ael//aal//+ aﬁaawvf =0
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Example: f(x,y) =x%+y
Step 1. Identity symmetry:

Rotation: ¢(x,y, a) = (Cf)sa o a) <)yc>

sSina COSa

Step 2. Evaluate gradient at identity:
Vf 2“ (V. 0,0) =
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Symmetry resides in all over the modern deep network architectures
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Q. Can we solve for complex learning dynamics of real deep learning models?

W Part 2. Symmetry Leads to Conservation Laws Under Gradient Flow

A



Symmetry Leads to Conservation Laws Under Gradient Flow

Gradient flow: The gradient descent update 87D = 8" — yg(6"™) with learning rate # is a forward
Euler discretization of the ODE known as gradient flow:

do

o — 8(0)

How do these learning dynamics interact with the geometric properties introduced by symmetry?

Translation Scale Rescale

(0,(1),1) = (6,(0),1) 10, > = 16,0 )* 16,0 = 10,01 =16, (0)]* = 16,,(0) |

A version of Noether’s Theorem: Every symmetry” of a network architecture has a corresponding
conserved quantity through training under gradient flow. Projecting the gradient flow dynamics onto
the generator vector field generates an ODE, whose solution 1s a conservation law.

d

il ow) =0
Emmy Noether (1882 - 1935) ! *satisfying a mild assumption
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Parameter combinations: || W(?) | |

Does this theory agree with empirics?

Experiment Theory (Gradient Flow)

Training time: ¢ Training time: ¢

CCCCC

CCCCC

CCCCC

CCCCC

CCCCC



No, conservation laws are broken empirically!
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Parameter combinations: || W(?)| |

Training time: ¢

Q. Why?

Gradient flow is too simple of a continuous model for SGD.
It fails to account for key building blocks of modern optimization:

weight decay
momentum

stochasticity
finite learning rates



Q. Can we solve for complex learning dynamics of real deep learning models?

Part 3. A Realistic Continuous Model for Stochastic Gradient Descent




Gradient flow is too simple, how can we construct a realistic continuous model for SGD?

Example: Quadratic Loss
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Modeling weight decay (1): Weight decay changes the trajectory from gradient flow

pulling the network to the origin in parameter space. -
49 = (0) — 10
i °

Modeling momentum (f): Momentum accelerates the learning dynamics rescaling
time, but leaves the trajectory intact.

(1—,5)%_— (0)
a - °

Modeling stochasticity: We model the batch gradient g 4(0) as a noisy version of the
tfull batch gradient g(@) such that,

85(0) =g0) +e

Blue curve: gradient flow

where E[e] = 0 and (g, d,yw) = (¢, 0, w) = 0 for any batch A. Red curve: modified trajectory



A Realistic Continuous Model for Stochastic Gradient Descent

Modeling discretization: Gradient descent moves in the direction of steepest descent, but
due to a finite learning rate fails to remain on the continuous steepest descent path.

Q. Does there exist a “continuous equation of learning” that can accurately model the
effect of a finite learning rate?

A. Moditied equation analysis is a method for modeling the discrepancy introduced by
a discretization of a PDE with higher order “spatial” or “temporal” derivatives.

Modified Loss: Introduces higher order derivatives of the loss,
effectively moditying the loss landscape itself.

R |

db

R N
= g(0) 2H(9)g(6’)

David G.T. Barrett and Benoit Dherin. Implicit Gradient Regularization. 2020.

Modified Flow: Introduces higher order temporal derivatives
modifying the flow directly.

db ) n d*0
. T T g £ ./‘?
dt 2 dtz 5 v /i
Blue curve: gradient flow
Nikola B. Kovachki, Andrew M. Stuart. Analysis Of Momentum Methods. 2019. Red curve: modified trajecto ry

Black dots: discrete SGD steps



Q. Can we solve for complex learning dynamics of real deep learning models?

Part 4. Combining Symmetry and Modified Flow to Derive Learning Dynamics

classifier




Q. How do weight decay, momentum, stochastic gradients, and finite learning
rates all interact to break these conservation laws?

Example: Consider the circular vector field on %*:

b ¥ F ¥ e~ )
bbb b o x),x)=0
o= (Y ~1x illii,f,ﬁﬁ<f()>
1 O N NN N >y A
1). Equation of learning. Discrete Circular flow Modified circular flow
dx dx n X
Q® .  =x+7nflx) = E=f(X) — E=f(x)+5x 2

2). Project the learning dynamics onto the generator vector fields associated with a symmetry.
3). Harness the geometric constraints introduced by symmetry to derive simplitied ODEs.

dx <f@,‘x>\= ’ dx <f@i>\: ’ n H
(—.x) = (for%) (—=x) = (%) + (5x.)
4). Solve these ODEs to obtain exact dynamics for the previously conserved quantities. | x ‘2
BETIIE TIPS
X" = [x(0)|° [ x|* = e x(0)]7

time



Q. How do weight decay, momentum, stochastic gradients, and finite learning
rates all interact to break these conservation laws?

To answer, we:
1. Consider a realistic continuous model for SGD, an equation of learning.

do = — F(O)dt + \/gG(H)th, FO)=(0+ g+ 10+ g(Hg + HO).

2. Project the learning dynamics onto the generator vector fields associated with a symmetry.

3. Harness the geometric constraints introduced by symmetry to derive simplified ODEs.

(2,6) =0 (8, HO) = — |g|” —(3,0) =0
- — N/ e N,/ \ 2 M 2
F,0) =1+ 1){g0)+ 400,0) + —((Hg,0) + (HP]0)) =A|0]" — =
(F,0) = (1 + A)(g<0) + 1(0,0) + - ((Hg, 0) + (BD)) =2161" = |2

4. Solve these ODEs to obtain exact dynamics for the previously conserved quantities.

d|6|” > M
=—A|0]"+—=]|g]
dt 2
Translation Scale Rescale
(0.4(t),1) = e (0.4(0), 1) |9A<t>|2=e—2*t\eA<0>\2+n/0 I t

PO ~ O 41 [P (g0~ g ) dr



Experiment

Theory

Theory (dotted lines) match the empirics (colored lines) pertectly!
VGG-16 trained on Tiny ImageNet with SGD
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Theory & Experiment

Theory (dotted lines) match the empirics (colored lines) pertectly!
VGG-16 trained on Tiny ImageNet with SGD
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Theory (dotted lines) match the empirics (colored lines) pertectly!
VGG-16 trained on Tiny ImageNet with SGD

Translation Scale Rescale
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o (0,(),1) decays exponentially to e Norm |0{Q¢|2 is the sum of an expo- e Similar to the scale dynamics, the
zero at a rate proportional to the nentially decaying memory of the rescale dynamics do depend on the
weight decay. norm at initialization and an data through the gradient norms

* Dynamics is independent of exponentially weighted integral of * No guarantee that the integral term
earning rate and data due to the gradient norms accumulated is always positive.
ack of curvature in the gradient through training.

field



Harmonic oscillation with momentum

Harmonic oscillator pulled by regularizer, pushed by gradients, with mass scaling with learning rate!

x A x1n|gl’
¢ >

Harmonic oscillation with momentum. When considering the learning dynamics of momentum, the solutions we

obtain take the form of driven harmonic oscillators, where the optimization hyperparameters have physical
Interpretations.
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We plot the column sum of the final linear layer of a VGG-16
model (without batch normalization) trained on Tiny ImageNet.



Conceptual Overview

Classical Mechanics V.S. Neural Mechanics

XX
eoo0 0
Z T N
y Physical space /Zé’l Parameter space
X 6,

Forces: Forces:
Gravity, Electric/Magnetic, Friction etc... Gradients driven by real world dataset
Equation of motion: Equation of learning:
Newton’s Law (F(x) = mafx) Modified gradient flow
Symmetries in Lagrangian: Symmetries in the Loss function:
Translation in time/space, Rotation Translation, Scale, Rescale
Conservation laws: Broken conservation laws:

Energy, momentum, angular momentum Dynamics of parameter combinations



Conclusion and Future Work

Two “hammers” developed and used in this work:

1. Symmetry: A unifying theoretical framework explaining how a network’s architecture leads to

geometric properties in the gradient and Hessian.

2. Modified Gradient Flow: A realistic continuous equation modeling SGD with weight decay,

momentum, stochasticity, and discretization.

Understanding Deep Learning: Task

Learning

Model
oae Rule

QR ——>



