aller an aller an aller an aller an aller aller aller an aller an aller an aller an aller an aller an aller

物理学における観測と機械学習 - 中性子星の事例 -

ALPANA ALPANA

福嶋 健二

東京大学大学院理学系研究科物理学専攻 東京大学 知の物理学研究センター (iπ)

1

脳の構造を変えずに、教え方でもっと 頭を良くするにはどうしたらいいか?

(教師あり学習の話)

脳の構造を変えずに、教え方でもっと 頭を良くするにはどうしたらいいか?

NN構造をどうデザインするか? 背景にある数理的な原理?定式化? よりシンプルな(少レイヤーの)DNN

脳の構造を変えずに、教え方でもっと 頭を良くするにはどうしたらいいか?

NNのアーキテクチャーを変更せずに 訓練データの加工によって学習性能を 向上させることはできるか?

NNのアーキテクチャーを変更せずに **訓練データの加工**によって学習性能を 向上させることはできるか?

訓練データの最適化はたいへん・・・

既存データの生成とプロセス・コスト

を変えずにできないか?

NNのアーキテクチャーを変更せずに 訓練データの加工によって学習性能を 向上させたい

より速く損失関数が小さくなる 損失関数がより小さくなる (local minimum) 過学習をより微調整なく回避できる

ARDA, ARDA

ĦĨŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿŴĿŢĬĬŢĿ

(傾向:訓練データを固定したとき)

NNが単純すぎるとlocal minimum やsaddle pointにつかまりやすい

NNが複雑すぎると表現能力が 高すぎて過学習しやすい

ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA, ARDA

(傾向:訓練データを固定したとき)

NNを複雑化するのが手っ取り早い・ 訓練データ生成は計算コストが大きい (NNを計算コスト削減に使いたかったりする)

NNが複雑すぎると表現能力が 高すぎて過学習しやすい

どうしてこんなことを考えるのか

物理でないデータとの違い

well-definedな正解はもともと 存在していない

Aさんの6はBさんの0かも?

(cf. 教師なし学習)

(MNIST)

どうしてこんなことを考えるのか

物理でないデータとの違い

0 00000000000 2 2222012222 3 3333333333333 4 444444444 5 \$555555555**5** 6 6666666666 7 77777777777 8 8888188888 999999999999

人工的に「正解」から程よく 揺らいだ訓練データを生成 できるか?「正解」の定義や 揺らがせ方に強い依存性

(MNIST)

どうしてこんなことを考えるのか

誤差

物理で扱うデータの特性

ある(原理的な)正解の周りで精度保証 されて揺らいだ観測データを扱う 中性子星の事例をすぐ後で紹介します

誤差

どうしてこんなことを考えるのか

どうしてこんなことを考えるのか

物理でのNN応用の現状

物理で扱うデータの特性 をまだ十分に深堀りできて いないのではないか?

2019年3月の学会にて(機械学習シンポ)

1年前に学会で述べた
 speculationについて
 数値実験してみた結果
 を専門家である
 聴衆の皆さんと
 議論したい

高エネルギー物理での応用事例 【クォークグルーオンプラズマ現象論】 L.-G. Pangのスライドより 相転移の分類 fc output EOS particle 16 32 flattened 128 layer spectra features features 15x48 15x48 8x24 $\tau = 0.4 \text{ fm}$ $\tau = 1.9 \text{ fm}$ $\tau = 3.7 \text{ fm}$ $\tau = 6.7 \text{ fm}$ crossover $\eta/s = 0.08$ EOSL +1st order $\eta/s = 0.08$ 7x7x16 conv, 32 8x8 conv, 16 dropout(0.2) dropout(0.2) dropout(0.5) EOSQ bn, PReLu bn, avgpool, PReLu bn, sigmoid $l(\theta) = \left| -\frac{1}{N} \sum_{i=1}^{N} \left[y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i) \right] \right| + \lambda ||\theta||_2^2$ cross entropy loss L2 regularization

June 25, 2020 @ DLと物理学

s to distinguish between a

1000 4U 1820-30 SAX J1748.9-2021 EXO 1745-248 2.5 KS 1731-260 Pressure *p* (MeV/fm³) 4U 1724-207 100 (⁰ ^{2.0} ♥ ₩ 1.5 4U 1608-52 M13 ENG ---- M28 MS1b M30 OHC18 Mass / ¹⁰ NGC 6304 SLy4 NGC 6397 10 WFF1 ω Cen YEFT ---- X5 Steiner et al. ---- X7 Özel & Freire 0.5 Ours (validation) Ours (10 NNs) 1000 100 12 14 16 0 2 8 10 6 Energy Density ρc^2 (MeV/fm³) Radius R (km)

Fujimoto-Fukushima-Murase: 1711.06748 [nucl-th] Fujimoto-Fukushima-Murase: 1903.03400 [nucl-th]

誤差のついた観測データから誤差のついた結果 を推定したい(多くの物理に共通の問題)

誤差のついた観測データから誤差のついた結果 ↑入力の不確かさ ↑出力の確かさ

ひとつのアプローチ:確率分布をパラメトライズ cf. Bayesian解析 / (制限) ボルツマンマシン

確率分布:Fokker-Planck的

→ 我々のアプローチ: Langevin的 (数値計算に有利)

【原子核=陽子・中性子の多体系】

中心部の密度ほぼ一定(飽和) 標準核密度 $ho_0 \simeq 2.7 \times 10^{17} \text{ kg/m}^3$

Fe~Niが最も安定 重い原子核は核分裂

【中性子星=超巨大原子核】

中心部の密度 $ho\gtrsim5
ho_0$

中性子星の物理の専門家になると計算しなくても M-R関係を見ただけで、元の状態方程式の性質を 推定できるようになる(つまり経験的に学習する)

尤もらしい答え 限られた観測データ

Bayesian解析が威力を発揮

Bayesian解析について

ALINE ALINE

ベイズの定理 規格化
$$P(A|B)P(B) = P(B|A)P(A)$$
観測のもとでの
国別のもとでの
この確率分布

観測数(中性子星の数)が増えればLikelihoodが中心極限 定理で鋭い関数になりprior依存性は消える・・・が 現状ではprior依存性はかなり大きい

疑似発生した観測データ → EoS推定 → MRに戻す(破線) → 正解と比較する(実線)

Mass (M_{\odot})	0.6	0.8	1.0	1.2	1.4	1.6	1.8
RMS (km)	0.16	0.12	0.10	0.099	0.11	0.11	0.12

簡単に性能を出せた

ので驚いた・・・

我々(藤本・福嶋・村瀬)のアイデア ಿಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ್ಟೆಂದ್ರೆ, ಬೆಟ Bayesian解析との比較 事前確率 (prior) 依存性はどこに? EoSを特徴付けるパラメータのランダムな選び方 観測された中性子星の数が極端に少なかったら 学習の効果が少なく出力されるEoSは初期値の 分布の影響 (prior依存性) を強く受ける 損失関数の選び方も不定性の起原

困難保存の法則

Layer	Number of neurons Activation function				
0 (Input)	56	N/A			
1	60	ReLU			
2, 3	40	ReLU			
4 (Output)) 5	anh			

訓練データ 500 x 100 x 100 (n_s)

観測の 1σ 領域

入力(観測)の誤差は訓練データのノイズコピー 出力(推定)の誤差はどうやって評価するか?

専門家に質問 → それは今後研究したい でも我々は今すぐ答えが欲しい・・・

ひとつの知られている方法:Bootstrap法

異なる訓練データセットから独立な予測モデルを 複数構成して出力の揺らぎから信頼幅を推定する

> ※ Bootstrap法は重複を許してランダムに再標本化 するサンプリング方法のこと (信頼幅推定は用途)

Bootstrapで得られる信頼幅は ひとつの枠組みの中での出力の 再現性の確からしさを表す

constraintが弱ければ乱数的に 大きく揺らぐはずなので指標と して悪くない・・・気がする

物理では統計誤差と系統誤差がある 系統誤差は(かなり)過小評価している可能性あり

2097 - MEN MEN97

June 25, 2020 @ DLと物理学

【簡単な用語の復習】

- 学習:損失関数を勾配に沿って落としていく
 - 勾 バッチ学習:訓練データを全部使って計算配 (時間がかかる)
 - 計 オンライン学習:訓練データひとつずつ計算算 (揺らぎが大きい)
 - 方 ミニバッチ学習:訓練データからランダムに
 法 ミニバッチを選んで計算

エポック:訓練データ全体を使った1プロセス

ನ್ ಸತಿಸುವುದೆ ಸತಿಸುವುದೆ ಸತಿಸು ಸತಿಸುವುದೆ. ಸಿಸಿ

【物理屋の発想】

ほとんど自明とも言える最もシンプルな 状況設定を使ってアイデアをテストする

- inputもoutputも1変数
- ・関数フィットの問題
 (雰囲気はスペクトル
 関数っぽくして・・・)
- ・劣化+雑音は手で処理

【物理屋の発想】

ほとんど自明とも言える最もシンプルな 状況設定を使ってアイデアをテストする

<mark>結構local minimumに落ちる</mark> ReLuは全然ダメ(dying ReLu) sigmoidの方がずっとよい 我々はLeaky ReLuを使う

ANDAR AND AR AND AR AND AR AND AR AND AND AND AR AND A

【物理屋の発想】

物理の問題ではf(x)の計算コストが高い プロトタイプで時間をかけず試行・実験

<mark>結構local minimumに落ちる</mark> ReLuは全然ダメ(dying ReLu) sigmoidの方がずっとよい 我々はLeaky ReLuを使う

AND AL AND AL AND AL AND AL AND AL AND AL AND AND AL AND A

【わざと過学習を起こす設定にしておく】

1-2-2-1: 13パラメータ 1-4-4-1: 33パラメータ 1-9-9-1: 118パラメータ

"極端"な状況設定

1層だとlocal minimumに落ちる

2層だとほぼフィットできる

訓練データが十分ないと過学習

ランダムなxを20個えらぶ → f(x)を計算(計算コスト大) それぞれのxにランダムノイズdxをのせる

【わざと過学習を起こす設定にしておく】

"極端"な状況設定

ランダムなxを20個えらぶ → f(x)を計算(計算コスト大) それぞれのxにランダムノイズdxをのせる ns個のランダムdxで訓練データかさ増し(計算コストゼロ)

June 25, 2020 @ DLと物理学

1-4-4-1で過学習した場合

#Batch = 1000000

June 25, 2020 @ DLと物理学

LOSS

【物理屋らしくもっと極端な設定にする】

June 25, 2020 @ DLと物理学

х

х

今日ここで議論したいこと
dxの揺らぎはbの揺らぎと等価
$$f_i(\boldsymbol{W}_i\cdot\boldsymbol{x}_i+\boldsymbol{b}_i)$$
 $\boldsymbol{W}_i\cdot(\boldsymbol{x}_i+\boldsymbol{\delta}\boldsymbol{x}_i)+\boldsymbol{b}_i$ $= \boldsymbol{W}_i\cdot\boldsymbol{x}_i+(\boldsymbol{W}_i\cdot\boldsymbol{\delta}\boldsymbol{x}_i+\boldsymbol{b}_i)$

{W_i, b_i}はもともと乱数的に発生していたのでは? (学習は{W_i, b_i}の初期値に強く依存する) Heの初期化 / Xavierの初期化

今日ここで議論したいこと
dxの揺らぎはbの揺らぎと等価
$$f_i(W_i \cdot x_i + b_i)$$

 $W_i \cdot (x_i + \delta x_i) + b_i$
 $= W_i \cdot x_i + (W_i \cdot \delta x_i + b_i)$

パラメータの初期化は学習の最初だけ dxによる揺らぎはミニバッチ毎(勾配計算毎)

ミニバッチ毎に{Wi, bi}を揺らがせたらどうなるか?

1 層目の{W, b}を揺らがせるとほぼ同じ結果を得る (全ての層の{W, b}を揺らがせるとさらに少し改善)

ほぼコストゼロで乱数的に訓練データを複製 NNのbの揺らぎを「外から」コントロールできる

脳の構造を変えずに、教え方でもっと 頭を良くするにはどうしたらいいか?

部分的に達成できた?

1-9-(dropout)-9-1

dropoutは実装するのは いちばんシンプルな方法

n₅のデータ複製はある種の アンサンブル学習に実効的 に対応している(かも)

- ・NNの構造には手を加えない
- ・dropout等のように学習の
 - 各プロセスで乱数発生させる 必要がないので学習スピード
 - はいちばん速い
- ・物理の観測データはもともと

こうやって与えられている

皆さまへのお願い

We are wondering:

- ・こういう問題設定は意味ある研究に なっているのだろうか?
- ・先行研究は絶対にあるに違いない・・・
- ・異分野すぎて研究のまとめ方が サッパリ分からない・・・

Your comments/feedback are welcome!

まとめ

E. MENGE, MENGE, MENGE, MENGE, MENGER, MENGE, MENGE, MENGE, MENGE, MENGE, M ■物理のデータ = 真値+観測誤差 □物理の問題には原理的な正解が存在する □データは正解の周りである精度で揺らいでいる ■中性子星の事例 □訓練データにノイズ入り複製を作る □Bootstrap法で信頼幅を推定 (系統誤差を過小評価) ■過学習を抑制する新しい手法としての可能性 □ノイズ入り複製はパラメータにバッチ揺らぎを 入れることに相当:dropoutと同等の性能を確認