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 脳の構造を変えずに、教え方でもっと 
 頭を良くするにはどうしたらいいか？ 

（教師あり学習の話）
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 脳の構造を変えずに、教え方でもっと 
 頭を良くするにはどうしたらいいか？ 

 NN構造をどうデザインするか？  
 背景にある数理的な原理？定式化？  
 よりシンプルな(少レイヤーの)DNN
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 脳の構造を変えずに、教え方でもっと 
 頭を良くするにはどうしたらいいか？ 

 NNのアーキテクチャーを変更せずに 
 訓練データの加工によって学習性能を  
 向上させることはできるか？
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 NNのアーキテクチャーを変更せずに 
 訓練データの加工によって学習性能を  
 向上させることはできるか？

 訓練データの最適化はたいへん・・・ 
 既存データの生成とプロセス・コスト  
 を変えずにできないか？
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 NNのアーキテクチャーを変更せずに 
 訓練データの加工によって学習性能を  
 向上させたい

より速く損失関数が小さくなる 
損失関数がより小さくなる (local minimum) 
過学習をより微調整なく回避できる
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（概念図）

損 
失 
関 
数

学習ステップ（エポック／ミニバッチ）

訓練データ

評価データ

（より速くより小さく）

local minimum 
saddle point

（過学習）



June 25, 2020 @ DLと物理学

今日ここで議論したいこと

8

（傾向：訓練データを固定したとき）

NNが単純すぎるとlocal minimum  
やsaddle pointにつかまりやすい

NNが複雑すぎると表現能力が 
高すぎて過学習しやすい
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（傾向：訓練データを固定したとき）

NNが複雑すぎると表現能力が 
高すぎて過学習しやすい

NNを複雑化するのが手っ取り早い・・・ 
訓練データ生成は計算コストが大きい 
（NNを計算コスト削減に使いたかったりする）
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どうしてこんなことを考えるのか

 物理でないデータとの違い 

(MNIST)

well-definedな正解はもともと 
存在していない
Aさんの6はBさんの0かも？
（cf. 教師なし学習）
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どうしてこんなことを考えるのか

 物理でないデータとの違い 

(MNIST)

人工的に「正解」から程よく 
揺らいだ訓練データを生成 
できるか？「正解」の定義や 
揺らがせ方に強い依存性
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どうしてこんなことを考えるのか

 物理で扱うデータの特性 
ある（原理的な）正解の周りで精度保証 
されて揺らいだ観測データを扱う
中性子星の事例をすぐ後で紹介します

非線型写像
誤差

誤差
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どうしてこんなことを考えるのか

 物理でのNN応用の現状 

非線型写像

非線型写像

（時短）

（分類） 
（診断）
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どうしてこんなことを考えるのか

 物理でのNN応用の現状 

非線型写像

非線型写像

 物理で扱うデータの特性 
 をまだ十分に深堀りできて  
 いないのではないか？ 
 

（時短）

（分類） 
（診断）
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2019年3月の学会にて（機械学習シンポ）

March 16, 2019 @ 学会 in 福岡

議論（2）

19

コピーをたくさん作って適当に揺らがせた 
データで訓練すると学習が速く進む
（適当に間違った教材を”たくさん”使って 
　勉強した人が速く賢くなる？）

  学習 = 極小をさけ最小をみつける 
（狭く深い最小 = 過学習をさける）

揺らぎで 
極小を回避

訓練データ 
の初期揺らぎ

量子力学（経路積分）の 
時間発展に似ている？

損失関数

1年前に学会で述べた 
speculationについて 
数値実験してみた結果 
を専門家である 
聴衆の皆さんと 
議論したい
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【クォークグルーオンプラズマ現象論】

LongGang Pang                Exploring the quantum chromodynamics phase transition with deep learning

:EB�ME!PB�PQOR#QROB�FP�BK#LABA�FK�QEB�BSLIRQFLK�EFPQLOV

28

⌧ = 0.4 fm ⌧ = 1.9 fm ⌧ = 3.7 fm ⌧ = 6.7 fm

! ! ! !

?

?

• The space-time evolution histories are visually clearly seen for two EoSs. 

• Whether we can see the differences in final particle spectra? 

• Whether deep neural network can decode the phase transition type from complex 
output of heavy ion collisions?

L.-G. Pangのスライドより
 相転移の分類 
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【ジェットの識別】

Jets at the LHC 3

Calorimeter

Image	from	B.	Nachman

M. Kaganのスライドより抜粋
Jets as Images 11

• A jet induces a distribution of  energy over 2 − 4
– Essentially how energy from a jet is seen by calorimeters

• Jet-image – fixed size 2D representation of  the jet 
as a distribution of  energy
– Can make use of  the full power of  Computer Vision!

Jet

Jet	Image

Jet-Images and Computer Vision 14

32- -
Generic overview slide
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

3xFC logistic

3x

Jet-image based developments (not complete)
J. Cogan et al. 1407.5675 (W-tagging)
L. De Oliveira et al. 1511.05190 (W-tagging)
P. Baldi et al. 1603.09349 (W-tagging) 
J. Barnard et al. 1609.00607 (W-tagging) 
P. Komiske et al. 1612.01551 (q/g-tagging) 
L. de Oliveira et. al. 1701.05927 (jet-image GAN)
G. Kasieczka et al. 1701.08784 (top-tagging)
K. Fraser et al. 1803:08066 (jet charge, q/g-tagging)

arXiv:1511.05190

標準的な方法として市民権を獲得している 
CNNの他、ジェットのシークエンス解析にRNN

 内部構造の診断 
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【場の量子論の数値シミュレーション】
M. Chernodubの最近の仕事より

4

FIG. 1. (left) The neural network used to predict the Casimir
energy ES for the static boundary S placed at the spatial
L ⇥ L lattice cross-section of the 3d model. The size of the
inputs of each layer is indicated on the left. The same network
is employed for the mean action in the 2d model. (right)
The examples of the quasi-parallel, corrugated lines used for
training and prediction.

(255, 255) (256, 256) (512, 512)
3d circles 3d lines 2d circles 2d lines 2d circles

samples 200 200 300 300 500
mean 0.064 0.0037 0.048 0.0025 0.084
min 0.000087 0.000019 0.00003 0.000024 0.000047
75% 0.069 0.0051 0.060 0.0034 0.096
max 2.1 0.016 0.87 0.015 1.1

TABLE I. Relative errors for 3d (for the Casimir energy EC)
and 2d (for the mean action hSi) compared to the MC result,
evaluated for the deformed circles and the quasi-parallel lines.
The line 75% gives the third quartile (75% of the errors are
below the value), min and max are the minimum and maximal
errors.

network reproduces well the MC result. The largest er-
rors are found for very small curves, as it can be expected
(the image resolution is not su�cient for the neural net-
work). The learning curves represent the evolution of
the root-mean-square error (loss) in terms of the num-
ber of samples used for training the neural network. The
validation data corresponds to all the data not used for
training. For large training sets, the flattening of both
curves indicate that there is enough samples for train-

Casimir energy – deformed circles in (2+1)d

Mean action – deformed circles in 2d

2 5
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FIG. 2. Learning curves for (top) the Casimir energy ES in 3d
scalar model and (bottom) the mean action hSi in 2d scalar
model for the set of the deformed circles at 2552 and 2563

lattices, respectively. The inset histograms confront, statisti-
cally, the real vs. predicted distributions of the Casimir ener-
gies ES and actions hSi, for the 3d and 2d sets, respectively.
Several examples of the deformed circles are shown as well
(described in Table II).

ing the network, the quasi-absence of gap between them
shows that there is no overfitting, and the overall low
values of the losses signals the absence of underfitting.
Together, this shows that the architecture of the network
is well adapted to the task.

We also demonstrate the success of the method in Ta-
ble II for a set of particular examples, visualized and la-
beled in the insets of Fig. 2. It is interesting to notice that
in most cases the neural network gives the prediction very
close to the mean actual value, which falls well within the
errors both at Monte-Carlo and Machine-Learning sides.
This fact, most probably, highlights a (cautionary) over-
estimation of the errors provided by the algorithms at
the both sides.

We got very similar results for the learning curves, the
statistical distribution and the magnitude of errors, for
the set of quasi-parallel lines, with typical examples vi-
sualized in the right panel of Fig. 1 and relative errors
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ing the network, the quasi-absence of gap between them
shows that there is no overfitting, and the overall low
values of the losses signals the absence of underfitting.
Together, this shows that the architecture of the network
is well adapted to the task.

We also demonstrate the success of the method in Ta-
ble II for a set of particular examples, visualized and la-
beled in the insets of Fig. 2. It is interesting to notice that
in most cases the neural network gives the prediction very
close to the mean actual value, which falls well within the
errors both at Monte-Carlo and Machine-Learning sides.
This fact, most probably, highlights a (cautionary) over-
estimation of the errors provided by the algorithms at
the both sides.

We got very similar results for the learning curves, the
statistical distribution and the magnitude of errors, for
the set of quasi-parallel lines, with typical examples vi-
sualized in the right panel of Fig. 1 and relative errors

 計算高速化 



June 25, 2020 @ DLと物理学

高エネルギー物理での応用事例

19

【中性子星の状態方程式(EoS)構築】 8

FIG. 2. EoS (“Ours” drawn by blue line) deduced from the experimental data of 14 neutron stars as

shown in Fig. 1. The light red and blue shades represent our 68% credibility band (“validation” and

“10 NNs”) evaluated in di↵erent ways; see Sec. IID for the precise meaning. Phenomenological EoS

candidates, the �EFT prediction and results inferred from Bayesian methods (Steiner et al. [20]

and Özel & Freire [3]) are overlaid for reference. The former [20] represents 68% CL, and the

latter [3] shows the contour of e�1 of the maximum likelihood.

M -R curves corresponding to the EoSs in Fig. 2. We see that our deduced EoS (blue curve)

certainly supports massive neutron stars above two solar mass [43–45].

B. Discussions

One may want to know why the uncertainty band of our deduced EoS looks such narrow.

A part of the reason lies in the boundary condition in the low density side; we assumed

SLy4 for ⇢  ⇢0 because up to this density the EoS is well constrained by nuclear properties

accessible by terrestrial experiments. So our results should be more precisely regarded as

the most likely extrapolation from SLy4 with help of the observational data of 14 neutron

stars. It shall be a future work to inspect possible bias e↵ect induced by such a choice of

the EoS up to ⇢0. Also we can in principle remove such an assumption by extending the

3

FIG. 1. (Left) Contour plot of the distributions of M and R for observed 14 neutron stars. The

shaded regions are encircled by probability contours of 1� (i.e., 68.27%).a (Right) Two represen-

tatives of the neutron star data on the R-M plane.

a The original data is downloadable from http://xtreme.as.arizona.edu/NeutronStars/.

Here, we propose a new method to utilize the neural network in the deep learning machin-

ery to estimate the EoS from real observational M -R data, as an extension from Ref. [25].

Deep learning provides us with a way to find a regression function for complex nonlinear

systems, and there are many physics applications, which include QCD physics [26, 27], nu-

clear physics [28], and gravitational waves [29] (see also Ref. [30] and references therein).

As we explicate below, an advantage to employ the deep learning method lies in the fact

that the numerical implementation is straightforward, so we are relatively free from implicit

biases.

II. METHODS

A. Compilation of observational data

Ideally, with su�cient computational resources, machine learning would be capable of

directly dealing with full multidimensional data from the observation. Figure 1 (Left) shows

only a single contour for each neutron star, but the full data is available in the form of

the probability distribution as exemplified in Fig. 1 (Right) for (arbitrarily chosen) two

Fujimoto-Fukushima-Murase: 1711.06748 [nucl-th] 
Fujimoto-Fukushima-Murase: 1903.03400 [nucl-th]
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FIG. 1. (Left) Contour plot of the distributions of M and R for observed 14 neutron stars. The

shaded regions are encircled by probability contours of 1� (i.e., 68.27%).a (Right) Two represen-

tatives of the neutron star data on the R-M plane.

a The original data is downloadable from http://xtreme.as.arizona.edu/NeutronStars/.

Here, we propose a new method to utilize the neural network in the deep learning machin-

ery to estimate the EoS from real observational M -R data, as an extension from Ref. [25].

Deep learning provides us with a way to find a regression function for complex nonlinear

systems, and there are many physics applications, which include QCD physics [26, 27], nu-

clear physics [28], and gravitational waves [29] (see also Ref. [30] and references therein).

As we explicate below, an advantage to employ the deep learning method lies in the fact

that the numerical implementation is straightforward, so we are relatively free from implicit

biases.

II. METHODS

A. Compilation of observational data

Ideally, with su�cient computational resources, machine learning would be capable of

directly dealing with full multidimensional data from the observation. Figure 1 (Left) shows

only a single contour for each neutron star, but the full data is available in the form of

the probability distribution as exemplified in Fig. 1 (Right) for (arbitrarily chosen) two

誤差のついた観測データから誤差のついた結果 
を推定したい（多くの物理に共通の問題）
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Deep learning provides us with a way to find a regression function for complex nonlinear

systems, and there are many physics applications, which include QCD physics [26, 27], nu-

clear physics [28], and gravitational waves [29] (see also Ref. [30] and references therein).

As we explicate below, an advantage to employ the deep learning method lies in the fact

that the numerical implementation is straightforward, so we are relatively free from implicit

biases.

II. METHODS

A. Compilation of observational data

Ideally, with su�cient computational resources, machine learning would be capable of

directly dealing with full multidimensional data from the observation. Figure 1 (Left) shows

only a single contour for each neutron star, but the full data is available in the form of

the probability distribution as exemplified in Fig. 1 (Right) for (arbitrarily chosen) two

誤差のついた観測データから誤差のついた結果 
↑入力の不確かさ　　　　　↑出力の確かさ
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FIG. 2. EoS (“Ours” drawn by blue line) deduced from the experimental data of 14 neutron stars as

shown in Fig. 1. The light red and blue shades represent our 68% credibility band (“validation” and

“10 NNs”) evaluated in di↵erent ways; see Sec. IID for the precise meaning. Phenomenological EoS

candidates, the �EFT prediction and results inferred from Bayesian methods (Steiner et al. [20]

and Özel & Freire [3]) are overlaid for reference. The former [20] represents 68% CL, and the

latter [3] shows the contour of e�1 of the maximum likelihood.

M -R curves corresponding to the EoSs in Fig. 2. We see that our deduced EoS (blue curve)

certainly supports massive neutron stars above two solar mass [43–45].

B. Discussions

One may want to know why the uncertainty band of our deduced EoS looks such narrow.

A part of the reason lies in the boundary condition in the low density side; we assumed

SLy4 for ⇢  ⇢0 because up to this density the EoS is well constrained by nuclear properties

accessible by terrestrial experiments. So our results should be more precisely regarded as

the most likely extrapolation from SLy4 with help of the observational data of 14 neutron

stars. It shall be a future work to inspect possible bias e↵ect induced by such a choice of

the EoS up to ⇢0. Also we can in principle remove such an assumption by extending the
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ひとつのアプローチ：確率分布をパラメトライズ 
　cf. Bayesian解析 /（制限）ボルツマンマシン
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確率分布：Fokker-Planck的 
→ 我々のアプローチ：Langevin的 (数値計算に有利)
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【原子核＝陽子・中性子の多体系】

中心部の密度ほぼ一定（飽和）
標準核密度 ⇢0 ' 2.7⇥ 1017 kg/m3

<latexit sha1_base64="D39m7XOC2xQTN1GieIr7wtV4Qgw="></latexit>

Fe~Niが最も安定 
重い原子核は核分裂

【中性子星＝超巨大原子核】 重力で束縛 
静水圧条件で構造決定中心部の密度

⇢ & 5⇢0
<latexit sha1_base64="I670y3B0UL9kE8gj6bkVmTWPl50="></latexit>

重力と圧力の釣合い
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密度 ρ

圧
力
 p

半径 R

質
量
 M

１対１対応

状態方程式 M-R関係

中性子星の物理の専門家になると計算しなくても 
M-R関係を見ただけで、元の状態方程式の性質を 
推定できるようになる（つまり経験的に学習する）

中心部の密度を 
媒介変数にした 
曲線を描く
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密度 ρ

圧
力
 p

半径 R

質
量
 M

１対１対応

状態方程式 M-R関係

「学習」を専門家でなく機械にさせたい

中心部の密度を 
媒介変数にした 
曲線を描く
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密度 ρ

圧
力
 p

半径 R

質
量
 M

１対１対応

状態方程式 M-R関係

観測データは 
有限個＋誤差

限られた観測データ尤もらしい答え

Bayesian解析が威力を発揮
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P (A|B)P (B) = P (B|A)P (A)

ベイズの定理

観測のもとでの 
EoSの確率分布

規格化

Likelihood prior
モデル

観測数(中性子星の数)が増えればLikelihoodが中心極限 
定理で鋭い関数になりprior依存性は消える・・・が 
現状ではprior依存性はかなり大きい
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量
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ランダム状態方程式 
ひとつ生成する

半径 R

質
量
 M

半径 R

質
量
 M

エラーバー程度に 
揺らいだデータを 
ns 個生成する

 １ 対 ns(>1) 対応 

（正解）

（劣化）
（雑音）
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密度 ρ

圧
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 p
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質
量
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ランダム状態方程式 
ひとつ生成する

半径 R

質
量
 M

半径 R

質
量
 M

エラーバー程度に 
揺らいだデータを 
ns 個生成する

 １ 対 ns(>1) 対応 

（正解）

（劣化）
（雑音）

主な計算コスト

計算コストなし
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正解の状態方程式
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対応するM-R関係

ではなくて

その周りでサンプリングしたデータ
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評価データによる検証

Fujimoto-Fukushima-Murase (2018)
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（計算の詳細：正解の分かっている検証実験）3

Layer index Nodes Activation

0 30 N/A

1 60 ReLU

2 40 ReLU

3 40 ReLU

4 5 tanh

TABLE I. Our neural network design in this work. In the
zeroth layer 30 nodes correspond to input 15 points of the
mass and the radius. In the last layer 5 nodes correspond to
5 output parameters of the EoS.

in this work.

For numerics we make use of a Python library,
Keras [22] with TensorFlow [23] as a backend. The design
of our neural network is summarized in Tab. I. Our pur-
pose is to construct neural network that can give us one
EoS in the output side in response to one observation,
(Mi, Ri) (i = 1, . . . 15) in the input side. Thus, in the
zeroth layer 30 nodes should match 15M -R points (30 in-
put data). For the practical reason we sort 30 data points
by their masses in ascending order. The output nodes
for the prediction target in the last layer correspond to
5 (sound velocity) parameters characterizing an EoS. We
find that the learning proceeds faster if data are normal-
ized appropriately; we use Mi/Mnorm and Ri/Rnorm with
Mnorm = 3M� and Rnorm = 20 km.

We choose the activation function at the output layer
as �(4)(x) = tanh(x) since the speed of sound is auto-
matically bounded in [0, 1]. For other layers we choose
the ReLU, i.e. �(k)(x) = max{0, x} (k = 1, 2, 3), which
is known to evade the vanishing gradient problem. We
specify the loss function as msle, that is, the mean square
log of prediction errors and choose the fitting method
as Adam [24] with the batch size 100. To capture the
essence of the problem, the complexity of layers and
nodes should be su�ciently large. Simultaneously, to
avoid the overfitting problem, and to train neural net-
work within a reasonable time, the number of layers and
nodes should not be too large. We found good perfor-
mance with the node numbers greater than the input
node number on the first layer.

The neural network is optimized to fit the training
data, but it must have a predictive power for indepen-
dent data. To test it, we need “validation data” which
can be regarded as mock data for the neutron star obser-
vation. We generate 200 EoSs, among which 196 EoSs
pass the massive neutron star condition. We sample just
one observation for each EoS, unlike 100 observations for
training data, to mimic real observational situations.

Figure 2 shows typical behavior of the loss function for
the training data (dashed lines) and the validation data
(solid lines) as a function of training time in units of
epoch which represents a single scan of the entire train-

FIG. 2. Loss function estimated for the training data (dashed
lines) and the validation data (solid lines) as functions of the
epoch. The observation number is denoted by ns.

ing data. The red solid and dashed lines show the results
with ns = 100, i.e. 194800 data set, where ns is the ob-
servation number per EoS. The dashed line is the loss
function for the training data minimized through learn-
ing, and the solid line is the loss function for the valida-
tion data showing the performance of neural network. We
monitor the whole history of these quantities over epochs,
which is useful to judge when the training is optimally
stopped before overfitting. We see that the training is
completed within 10 epochs for this example in Fig. 2.
For the test purpose to see the e�ciency improved by ns,
we also show results with ns = 1 by the blue solid and
dashed lines in Fig. 2. The faster learning with ns = 100
than ns = 1 can be explained by data set sizes (194800
for ns = 100 and 1948 for ns = 1). It is important
to emphasize that introducing large ns in our proposal
can reduce the computational cost needed to increase the
data set size. Interestingly, moreover, the validation loss
function for ns = 1 shows overfitting; in general, the loss
function for the training data monotonically decreases.
For the validation data, however, it may not necessar-
ily decrease and increasing behavior is seen for ns = 1
for epochs & 1000. This significant separation of train-
ing and validation loss functions signals overfitting and
then the predicted output could largely deviate from the
true answer. We learn from Fig. 2 that the overfitting
problem is also cured by ns � 1.

Once the loss function converges, we can use the
trained neural network to infer an EoS from an obser-
vation of 15 M -R points. We picked two examples for
Fig. 3. Later, we will quantify the overall performance
and for the moment we shall discuss these examples. In
Fig. 3 the dashed lines represent randomly generated
EoSs. We see that two EoSs are identical in the low
density region because SLy is employed at ⇢  ⇢0. We
sampled 15 points as shown in Fig. 4, which mimic an

4

FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M -R points [see
Fig. 4 for actual (Mi, Ri)].
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FIG. 4. Randomly sampled 15 data points and the M -R rela-
tions with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.

Mass (M�) 0.6 0.8 1.0 1.2 1.4 1.6 1.8

RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
tion optimized with insu�cient information and limited
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FIG. 3. Two examples of the randomly generated EoSs
(dashed lines) and the machine learning outputs (solid lines)
reconstructed from one observation of 15 M -R points [see
Fig. 4 for actual (Mi, Ri)].
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tions with the reconstructed EoS (solid lines) and the original
EoS (dashed lines). The red and blue colors correspond to two
EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.
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RMS (km) 0.16 0.12 0.10 0.099 0.11 0.11 0.12

TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
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疑似発生した観測データ → EoS推定 → MRに戻す(破線) 
→ 正解と比較する(実線) 4
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reconstructed from one observation of 15 M -R points [see
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tions with the reconstructed EoS (solid lines) and the original
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EoSs shown with the same color in Fig. 3.

observation with error deviations from the genuine M -R
relation (which is shown by the dashed lines). Thus, each
set of 15 points is considered as mock data of the neutron
star observation. Since the neural network learns through
the training data that the observation contains errors, the
most likely EoS is reconstructed from one observation of
15 points with errors. The reconstructed EoSs are de-
picted by solid lines in Fig. 3. We can see that the re-
constructed EoSs agree quite well with the original EoSs
for these examples. It would also be interesting to make
a comparison of the M -R relations corresponding to the
original and reconstructed EoSs. The solid and dashed
lines in Fig. 4 represent the M -R relations calculated
with the original and reconstructed EoSs, respectively.
Since the EoSs look consistent in Fig. 3, the original and
reconstructed M -R relations are close to each other.
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TABLE II. Root mean square of radius deviations for fixed
masses.

For other EoSs in validation data, the corresponding
M -R curves are reconstructed well similarly to examples
discussed above. To quantify the overall reconstruction
accuracy, we calculated the root mean square (RMS) of
radius deviations using 196 validation data for several
masses as shown in Tab. II. We defined the RMS from the
deviations between not the observational data points but
the genuine and reconstructed M -R relations (i.e. dis-
tances between the solid and the dashed lines in Fig. 4),
that is, �R(M) = R(rec)(M) � R(0)(M). The RMS val-
ues in Tab. II are around ⇠ 0.1 km for all masses! This
indicates that our method works surprisingly good; re-
member that data points have random fluctuations by
�R ⇠ 0.5 km. It should be noticed that, even without
neutron stars around M = 0.6–0.8M� in our setup, the
RMS of the corresponding radii are still reconstructed
within the accuracy of the order ⇠ 0.1 km.

Finally, let us comment on the relation to Bayesian
analysis using symbolic notations. In our analysis we
parametrized the EoS by ✓ := {c2s,i}, which spans pa-
rameter space ⇥, and generated EoSs by a probability
distribution Pr(✓). Then, we sampled D = {(Mi, Ri)}
by an observational distribution, Pr(D|✓) for each EoS.
The neural network is a function f to obtain an EoS from
data points, i.e. f(D|W ) 2 ⇥, where W represents the
fitting parameters. The training is actually a process to
minimize the following loss function:

h`[f ]i =
Z

d✓dDPr(✓) Pr(D|✓)`(✓, f(D)). (3)

Here, let us translate Bayesian analysis into the above
language. In Bayesian analysis a prior distribution of
the EoS is assumed to be Pr(✓). The posterior EoS dis-
tribution is obtained by Bayesian updating; Pr(✓|D) /
Pr(✓) Pr(D|✓). To determine the most likely EoS, we can
use the MAP (maximum a posteriori) estimator,

fMAP(D) = argmax
✓

[Pr(✓) Pr(D|✓)] . (4)

This can be interpreted as an approximation of f that
minimizes Eq. (3). This means that machine learning en-
compasses Bayesian analysis as a particular limit. Hence,
an advantage of machine learning over Bayesian analysis
lies in the direct design of the loss function or optimiza-
tion target, suited for problems under consideration. We
emphasize the generality of our method which can be ap-
plied, with a little e↵ort, to any underdetermined prob-
lems; an e�cient procedure to find the most likely solu-
tion optimized with insu�cient information and limited

簡単に性能を出せた 
ので驚いた・・・

訓練データ 
200 x 100 (ns)
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Bayesian解析との比較

事前確率 (prior) 依存性はどこに？

EoSを特徴付けるパラメータのランダムな選び方

観測された中性子星の数が極端に少なかったら 
学習の効果が少なく出力されるEoSは初期値の 
分布の影響 (prior依存性) を強く受ける

 困難保存の法則 
損失関数の選び方も不定性の起原
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FIG. 2. Contour plot of the distributions of M and R for observed 14 neutron stars. The shaded

regions are encircled by probability contours of 1� (i.e., 68.27%). The original data is downloadable

from http://xtreme.as.arizona.edu/NeutronStars/.

of M and R consist of what is called an M -R relation. The mapping between the M -R

relation and the EoS is in one-to-one correspondence [24], and the precision and accuracy

of experimental M -R data are expected to improve (see Ref. [25]), so that the EoS can be

constrained better in the future.

In the past several years a parallel avenue of the progress has taken place with the

Bayesian analysis [26–29]. Now, the Bayesian analysis is one of the standard methods to

infer physics information from experimental observations, which is applied to not only the

M -R relation of the neutron star but also the detection of gravitational waves [30]. The

theory of the analysis is firmly founded on the Bayes theorem. In the Bayesian inference the

posterior probability, which is what we want to know finally, is given by a convolution of the

likelihood function and the prior distribution. If the number of available observational data

is su�ciently large, the likelihood would be well localized such that the choice of the prior

14個の中性子星の 
観測の1σ領域

（計算の詳細：実際の観測データを用いた解析） 8

FIG. 2. EoS (“Ours” drawn by blue line) deduced from the experimental data of 14 neutron stars as

shown in Fig. 1. The light red and blue shades represent our 68% credibility band (“validation” and

“10 NNs”) evaluated in di↵erent ways; see Sec. IID for the precise meaning. Phenomenological EoS

candidates, the �EFT prediction and results inferred from Bayesian methods (Steiner et al. [20]

and Özel & Freire [3]) are overlaid for reference. The former [20] represents 68% CL, and the

latter [3] shows the contour of e�1 of the maximum likelihood.

M -R curves corresponding to the EoSs in Fig. 2. We see that our deduced EoS (blue curve)

certainly supports massive neutron stars above two solar mass [43–45].

B. Discussions

One may want to know why the uncertainty band of our deduced EoS looks such narrow.

A part of the reason lies in the boundary condition in the low density side; we assumed

SLy4 for ⇢  ⇢0 because up to this density the EoS is well constrained by nuclear properties

accessible by terrestrial experiments. So our results should be more precisely regarded as

the most likely extrapolation from SLy4 with help of the observational data of 14 neutron

stars. It shall be a future work to inspect possible bias e↵ect induced by such a choice of

the EoS up to ⇢0. Also we can in principle remove such an assumption by extending the

6

Layer Number of neurons Activation function

0 (Input) 56 N/A

1 60 ReLU

2, 3 40 ReLU

4 (Output) 5 tanh

TABLE I. Our neural network architecture in this work. In the input layer 56 neurons correspond

to parameters of 14 points of the mass, the radius, and their variances. In the output layer 5

neurons correspond to 5 parameters of the EoS.

We chose the activation function at the output layer as �(4)(x) = tanh(x), so that the

sound velocity automatically satisfies the causal bound. For hidden layers the activation

function is the ReLU, i.e., �(k)(x) = max{0, x} (k = 1, 2, 3), which is known to evade the

vanishing gradient problem and a standard choice in deep learning [34]. We implement the

loss function by the mean square logarithmic errors (msle). The optimization method of

our choice is Adam [35] with the batch size 1000. We initialized neural network parameters

with the Glorot uniform distribution [36].

D. Uncertainty estimate from credibility of reproducibility

In our strategy we took care of the probability distribution in the observational side

only, but the deduced EoS also has such a probability distribution around the most likely

curve. To implement that, instead of randomly generating EoSs, we could have generated

some distributions on the ⇢-p plane and sample fluctuating EoSs according to the generated

distribution, which would, however, increase the size of the training dataset tens of thousands

larger and require gigantic computational resources.

Here, we employ an alternative practical way to quantify the credibility of the deduced

EoS with less e↵orts. We generate 10 independent training datasets to prepare 10 indepen-

dent neural network models. For the same real experimental data, those 10 neural network

models output 10 deduced EoSs. If a part of the EoS is insensitive to the M -R observation,

di↵erent neural network models would lead to di↵erent EoSs in such an unconstrained re-

gion. From the dispersion over 10 deduced EoSs, therefore, we can estimate the credibility

of our results. Strictly speaking, this dispersion is not the probability distribution of the

訓練データ 
500 x 100 x 100 (ns)

入力(観測)の誤差は訓練データのノイズコピー 
出力(推定)の誤差はどうやって評価するか？
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出力(推定)の誤差はどうやって評価するか？

専門家に質問 → それは今後研究したい 
でも我々は今すぐ答えが欲しい・・・

ひとつの知られている方法：Bootstrap法
異なる訓練データセットから独立な予測モデルを 
複数構成して出力の揺らぎから信頼幅を推定する

※ Bootstrap法は重複を許してランダムに再標本化  
　 するサンプリング方法のこと (信頼幅推定は用途)
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出力(推定)の誤差はどうやって評価するか？8

FIG. 2. EoS (“Ours” drawn by blue line) deduced from the experimental data of 14 neutron stars as

shown in Fig. 1. The light red and blue shades represent our 68% credibility band (“validation” and

“10 NNs”) evaluated in di↵erent ways; see Sec. IID for the precise meaning. Phenomenological EoS

candidates, the �EFT prediction and results inferred from Bayesian methods (Steiner et al. [20]

and Özel & Freire [3]) are overlaid for reference. The former [20] represents 68% CL, and the

latter [3] shows the contour of e�1 of the maximum likelihood.

M -R curves corresponding to the EoSs in Fig. 2. We see that our deduced EoS (blue curve)

certainly supports massive neutron stars above two solar mass [43–45].

B. Discussions

One may want to know why the uncertainty band of our deduced EoS looks such narrow.

A part of the reason lies in the boundary condition in the low density side; we assumed

SLy4 for ⇢  ⇢0 because up to this density the EoS is well constrained by nuclear properties

accessible by terrestrial experiments. So our results should be more precisely regarded as

the most likely extrapolation from SLy4 with help of the observational data of 14 neutron

stars. It shall be a future work to inspect possible bias e↵ect induced by such a choice of

the EoS up to ⇢0. Also we can in principle remove such an assumption by extending the

Bootstrapで得られる信頼幅は  
ひとつの枠組みの中での出力の 
再現性の確からしさを表す

constraintが弱ければ乱数的に 
大きく揺らぐはずなので指標と 
して悪くない・・・気がする

物理では統計誤差と系統誤差がある 
系統誤差は(かなり)過小評価している可能性あり
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Fujimoto-Fukushima-Murase (2018)

過学習

過学習を回避
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【簡単な用語の復習】
学習：損失関数を勾配に沿って落としていく

バッチ学習：訓練データを全部使って計算 
　　　　　　（時間がかかる）

ミニバッチ学習：訓練データからランダムに 
　　　　　　　　ミニバッチを選んで計算

オンライン学習：訓練データひとつずつ計算 
　　　　　　　　（揺らぎが大きい）

エポック：訓練データ全体を使った１プロセス

勾 
配 
計 
算 
方 
法
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Fujimoto-Fukushima-Murase (2018)

過学習

過学習を回避

訓練データのサイズが 
100倍になると1エポック  
に100倍の学習過程が 
含まれている

注目したいもの
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【物理屋の発想】
ほとんど自明とも言える最もシンプルな 
状況設定を使ってアイデアをテストする

・inputもoutputも1変数 
・関数フィットの問題 
（雰囲気はスペクトル 
　関数っぽくして・・・） 
・劣化＋雑音は手で処理

f(x) = (10x2 � 6x3 + x4) e�x

<latexit sha1_base64="y4MTEW3ZwJgaXeVWD1gJyL0pWuU="></latexit>
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【物理屋の発想】
ほとんど自明とも言える最もシンプルな 
状況設定を使ってアイデアをテストする

f(x) = (10x2 � 6x3 + x4) e�x

<latexit sha1_base64="y4MTEW3ZwJgaXeVWD1gJyL0pWuU="></latexit>

結構local minimumに落ちる
ReLuは全然ダメ(dying ReLu) 
sigmoidの方がずっとよい 
我々はLeaky ReLuを使う
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【物理屋の発想】
物理の問題ではf(x)の計算コストが高い 
プロトタイプで時間をかけず試行・実験

f(x) = (10x2 � 6x3 + x4) e�x

<latexit sha1_base64="y4MTEW3ZwJgaXeVWD1gJyL0pWuU=">AAACiHichVFNS+tAFD1Gn9b61acbwU2wKJX3Wm60vKogiG5c+lUV1EoSpxpMk5CkJVr8AfoHXLhSEBEXbn3rt/EPuPAniEsFNy68TQMPFfUOM3PmzD13zsxojml4PtFdg9TY9KO5JdYab2vv6OxK/Oxe8uyyq4u8bpu2u6KpnjANS+R9wzfFiuMKtaSZYlnbma7tL1eE6xm2tejvOmK9pG5ZRtHQVZ+pjUSymAqG5Ak5pVBQGJbTf4LCiPxLDgrZobXfsihU08E+Z1GGwpA/AiUCSUQxayfOsYZN2NBRRgkCFnzGJlR43FahgOAwt44qcy4jI9wX2EectWXOEpyhMrvD4xavViPW4nWtpheqdT7F5O6yUsYA3dIFPdINXdI9vXxaqxrWqHnZ5Vmra4Wz0XXYu/D8rarEs4/t/6ovPfsoYjT0arB3J2Rqt9Dr+sre0ePC+PxAdZBO6YH9n9Ad/eMbWJUn/WxOzB8jzh+gvH/uj2BpOKNkM2Nz2eTkVPQVMfShHyl+7xwmMYNZ5PncA1zhGn+luERSThqrp0oNkaYHb0KaegXbQJOB</latexit>

結構local minimumに落ちる
ReLuは全然ダメ(dying ReLu) 
sigmoidの方がずっとよい 
我々はLeaky ReLuを使う
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【わざと過学習を起こす設定にしておく】

○ 
x

○ 
y

隠れ層

１層だとlocal minimumに落ちる
２層だとほぼフィットできる
訓練データが十分ないと過学習

ランダムなxを20個えらぶ → f(x)を計算（計算コスト大） 
それぞれのxにランダムノイズdxをのせる

“極端”な状況設定

1-2-2-1: 13パラメータ 
1-4-4-1: 33パラメータ 
1-9-9-1: 118パラメータ
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【わざと過学習を起こす設定にしておく】

ランダムなxを20個えらぶ → f(x)を計算（計算コスト大） 
それぞれのxにランダムノイズdxをのせる  
ns個のランダムdxで訓練データかさ増し（計算コストゼロ）

“極端”な状況設定

中性子星のとき 
観測誤差を扱った 
方法のモデル化
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【わざと過学習を起こす設定にしておく】
1-4-4-1で過学習した場合
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【わざと過学習を起こす設定にしておく】
1-4-4-1で過学習した場合

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 1  10  100  1000  10000 100000 1x106

Lo
ss

#Batch

Test (ns=100)
Train (ns=100)

Test (ns=1)
Train (ns=1)

・100回訓練した平均 
・実際はns=5程度で十分 
・横軸はエポックではない

過学習 
を抑制！
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【物理屋らしくもっと極端な設定にする】

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 1  10  100  1000  10000  100000  1x106

NN1991, nbase = 20
Dashed: train loss

Lo
ss

#Batch

Compare ns

Normal (ns = 1)
ns = 10

ns = 100

1-9-9‒1で酷い過学習した場合
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【物理屋らしくもっと極端な設定にする】

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 1  10  100  1000  10000  100000  1x106

Lo
ss

#Batch

Compare ns

Normal (ns = 1)
ns = 10

ns = 100

他のグラフでは幅は 
平均値の幅を示す 
このグラフでの幅は 
標準偏差を表す

過学習が抑えられると 
平均だけでなく個別でも 
大きく外すことがない
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【物理屋らしくもっと極端な設定にする】
過学習すると何が起きるのか

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0  2  4  6  8  10

y

x

Over�tting (Normal)

Original
NN #3
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 0.5
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 1.5
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 0  2  4  6  8  10

y

x

Over�tting (Normal)

Original
NN #0

-0.5

 0

 0.5

 1

 1.5

 2
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 0  2  4  6  8  10

y
x

Over�tting (Normal)

Original
NN #1

-0.2
 0

 0.2
 0.4
 0.6
 0.8

 1
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 0  2  4  6  8  10

y

x

Over�tting (Normal)

Original
NN #2
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dxの揺らぎはbの揺らぎと等価

{Wi, bi}はもともと乱数的に発生していたのでは？ 
（学習は{Wi, bi}の初期値に強く依存する） 
  Heの初期化 / Xavierの初期化

fi(W i · xi + bi)

<latexit sha1_base64="YY8RIILMdR8W9RaAoKghd9HSrFY="></latexit>

W i · (xi + �xi) + bi

= W i · xi + (W i · �xi + bi)

<latexit sha1_base64="14tHbvpmJ6FbBfuBPyWt2/tfR1o="></latexit>
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dxの揺らぎはbの揺らぎと等価
fi(W i · xi + bi)

<latexit sha1_base64="YY8RIILMdR8W9RaAoKghd9HSrFY="></latexit>

W i · (xi + �xi) + bi

= W i · xi + (W i · �xi + bi)

<latexit sha1_base64="14tHbvpmJ6FbBfuBPyWt2/tfR1o="></latexit>

パラメータの初期化は学習の最初だけ 
dxによる揺らぎはミニバッチ毎（勾配計算毎）

ミニバッチ毎に{Wi, bi}を揺らがせたらどうなるか？
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ミニバッチ毎に{Wi, bi}を揺らがせたらどうなるか？

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 1  10  100  1000  10000  100000  1x106

NN1991, nbase = 20
Dashed: train loss

Lo
ss

#Batch

Compare ns

Normal (ns = 1)
ns = 10

ns = 100

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 1  10  100  1000  10000  100000  1x106

NN1991, nbase = 20
Dashed: train loss

Lo
ss

#Batch

Compare ns

Normal
Noised (W1,b1) � = 0.2
Noised (W1,b1) � = 0.4

１層目の{W, b}を揺らがせるとほぼ同じ結果を得る 
（全ての層の{W, b}を揺らがせるとさらに少し改善）
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ほぼコストゼロで乱数的に訓練データを複製 
NNのbの揺らぎを「外から」コントロールできる

 脳の構造を変えずに、教え方でもっと 
 頭を良くするにはどうしたらいいか？ 

部分的に達成できた？
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脳の構造を変えれば過学習を回避する方法はある

いまの問題だとdropoutは 
１層目の{W, b}の揺らぎと 
ほぼ同じ過学習抑制効果

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

 1  10  100  1000  10000  100000  1x106

NN1991, nbase = 20
Dashed: train loss

Lo
ss

#Batch

Normal
ns = 10

Noised (W1,b1) � = 0.2
Dropout 10%

1-9-(dropout)-9‒1

dropoutは実装するのは 
いちばんシンプルな方法

nsのデータ複製はある種の 
アンサンブル学習に実効的 
に対応している(かも)
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我々の方法の持つ利点
・NNの構造には手を加えない 
・dropout等のように学習の 
　各プロセスで乱数発生させる 
　必要がないので学習スピード 
　はいちばん速い 
・物理の観測データはもともと 
　こうやって与えられている



June 25, 2020 @ DLと物理学

皆さまへのお願い

56

We are wondering:
・こういう問題設定は意味ある研究に 
　なっているのだろうか？ 
・先行研究は絶対にあるに違いない・・・ 
・異分野すぎて研究のまとめ方が 
　サッパリ分からない・・・

Your comments/feedback are welcome!
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まとめ
物理のデータ = 真値＋観測誤差 
□物理の問題には原理的な正解が存在する 
□データは正解の周りである精度で揺らいでいる 
中性子星の事例 
□訓練データにノイズ入り複製を作る 
□Bootstrap法で信頼幅を推定 (系統誤差を過小評価) 
過学習を抑制する新しい手法としての可能性 
□ノイズ入り複製はパラメータにバッチ揺らぎを 
入れることに相当：dropoutと同等の性能を確認

57


