Hopfield/Mixer correspondence

towards a better understanding of MetaFormers architecture design

Toshihiro Ota

CyberAgent, Inc. / RIKEN iTHEMS

December, 2023

Mainly based on 2304.13061 with Masato Taki (Rikkyo Univ./RIKEN iTHEMS)

Introdu 00000		Attention is All You Ni 00000	EED	HN is All You Need 000000	1Mixer 000000	Summary 00
Вю	GRAPHY					
	Apr. 201	6 - Mar. 2021	Osaka	Univ., Ph.D. in	Physics	
			AdS/C	CFT, class \mathcal{S} , integ	grability	
	Apr. 202	1 - July 2021	UToky	vo, Math. Sci.		
			Low-d	im. topology, qua	antum algebra	
	Aug. 202	21 - Nov. 2022	Tokyo	Tech, School of	Computing	
			Machi	ne Learning, Dee	p Learning	
	Dec. 2022	2 - present	Cyber	Agent, AI Lab		
			Machi	ne Learning, Dee	p Learning	
			Machi	ne Learning, Dee	p Learning	

Apr. 2019 - present RIKEN, iTHEMS

Introduction	Attention is All You Need	HN is All You Need	iMixer	
•0000	00000	000000	000000	

Today's main message:

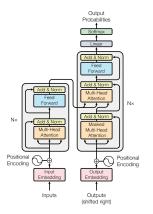
• Hopfield/Mixer correspondence as an approach for MetaFormes architecture design

Based on the correspondence, we theoretically predict *iMixer*: a novel MetaFormer model from hierarchical Hopfield network [TO-Taki, 2304.13061]

00000 00000 00000 00000 00	Introduction			IMIXER	
	0000	00000	000000	000000	00

Attention is All You Need

Transformer in our everyday life [Vaswani+ NeurIPS17, Fig. 1]

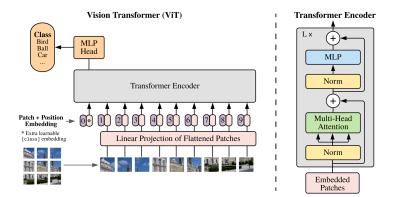


Large success across nearly all domains

Introduction		IMIXER	
00000			

Attention is All You Need

An image is worth 16x16 words: Vision Transformer



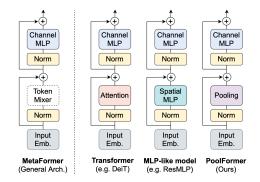
[Dosovitskiy+ ICLR21; Touvron+ ICML21; ...]

Introduction		IMIXER	
00000			

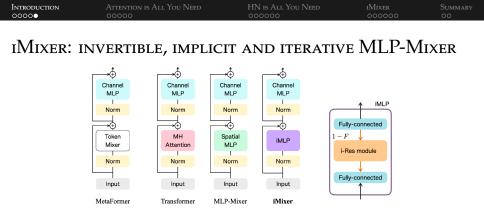
Attention is All You Need?

MetaFormers (MLP-Mixer, Conv/Pool/Rand/Identity-Former,

...) [Tolstikhin+ NeurIPS21; Melas-Kyriazi 21; Yu+ 22]



[Yu+ CVPR22, Fig. 1a]



- *Derive* a new MetaFormer model from Hopfield/Mixer correspondence
- Provide a direction for incorporating *implicit* NNs
- Empirical study supports the validity of our formulation

Introduction 00000	Attention is All You Need	HN is All You Need 000000	iMixer 000000	

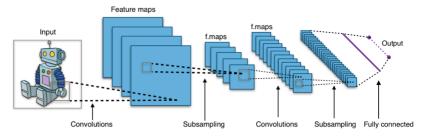
Contents

1. Introduction

- 2. Attention is All You Need
 - CNN vs Vision Transformer
 - Attention is All You Need?
- 3. Hopfield Networks is All You Need
- 4. iMixer: invertible, implicit and iterative MLP-Mixer from modern Hopfield network

Introduction	Attention is All You Need	HN is All You Need	iMixer	
00000	●0000	000000	000000	

Convolutional Neural Network



https://en.wikipedia.org/wiki/Convolutional_neural_network

respects

- Locality
- Translation invariance

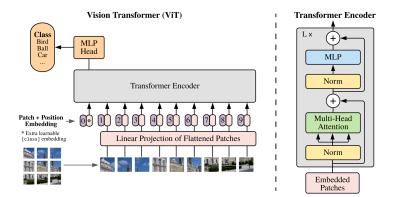
 \rightsquigarrow

"inductive bias"

Attention is All You Need	IMIXER	
0000		

VISION TRANSFORMER

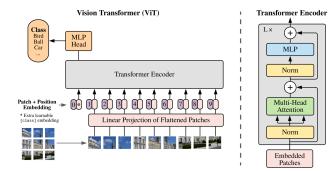
An image is worth 16x16 words [Dosovitskiy+ ICLR21, Fig. 1]



Quite less inductive bias than CNN

Attention is All You Need	IMIXER	
00000		

VISION TRANSFORMER



Attention mechanism:

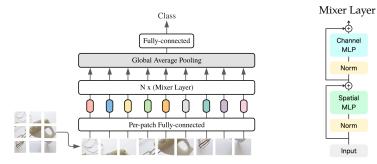
$$Y = \operatorname{Attn}(X) = V^{\top} \operatorname{softmax}(KQ^{\top})$$
$$Q = W_Q X, \quad K = W_K X, \quad V = W_V X$$

 Introduction
 Attention is All You Need
 HN is All You Need
 iMixer
 Summary

 00000
 00000
 000000
 000000
 00
 00

Attention is All You Need?

Casted doubt on the role of attention module: MLP-Mixer



[Tolstikhin+ NeurIPS21, Fig. 1] Spatial MLP:

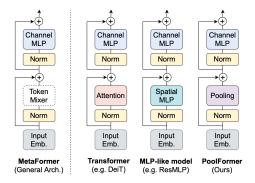
 $Y = W_2 \sigma(W_1 X)$

Simpler than attention mechanism and yet less inductive bias

Attention is All You Need	IMIXER	
00000		

Attention is All You Need?

MetaFormers [Yu+ CVPR22, Fig. 1a]



Token-mixing block:

Y = X + TokenMixer(Norm(X))

	HN 15 All You Need	iMixer	

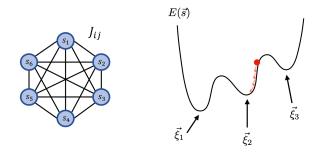
Contents

- 1. Introduction
- 2. Attention is All You Need
 - CNN vs Vision Transformer
 - Attention is All You Need?
- 3. Hopfield Networks is All You Need
 - Modern Hopfield networks to the rescue
- 4. iMixer: invertible, implicit and iterative MLP-Mixer from modern Hopfield network

		HN is All You Need	IMIXER	
00000	00000	000000	000000	

CLASSICAL HOPFIELD NETWORK

A classical associative memory model [Hopfield 82]



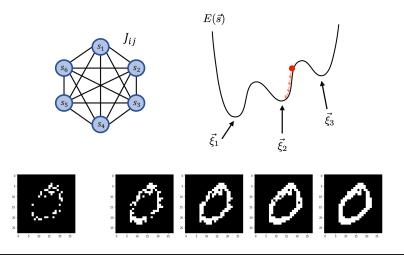
Update rule $\vec{s} \leftarrow \operatorname{sgn}(J\vec{s})$ minimizes the energy function,

$$E(\vec{s}) = -\sum_{i \neq j} J_{ij} s_i s_j, \quad J := \sum_{\mu} \vec{\xi}_{\mu} \vec{\xi}_{\mu}^{\top}, \quad s_i \in \{\pm 1\}$$

		HN is All You Need	IMIXER	
00000	00000	00000		

CLASSICAL HOPFIELD NETWORK

A classical associative memory model [Hopfield 82]



		HN is All You Need	IMIXER	
00000	00000	00000	000000	00

HOPFIELD NETWORKS IS ALL YOU NEED

Attention = a Hopfield update rule [Ramsauer+ ICLR21, Fig. A.7]

$$v_i \in \mathbb{R},$$

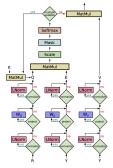
 $\xi = (\vec{\xi_1}, \dots, \vec{\xi_N})^{ op}$

Update rule

$$v_i \leftarrow \sum_{\mu} \xi_{i\mu} \text{softmax}\left(\sum_j \xi_{\mu j} v_j\right)$$

minimizes an energy function

$$E(\{v_i\}) = \frac{1}{2} \sum_{i} v_i^2 - \log \sum_{\mu} \exp\left(\sum_{i} \xi_{\mu i} v_i\right)$$



		HN is All You Need	IMIXER	
00000	00000	00000	000000	00

Unification of energy-based associative memory models [Krotov-Hopfield ICLR21]

$$\tau_{v} \frac{dv_{i}(t)}{dt} = \sum_{\mu=1}^{N_{h}} \xi_{i\mu} f_{\mu}(h(t)) - v_{i}(t) \qquad v_{i} \qquad v_{$$

Activation functions f, g are determined by "Lagrangians":

$$f_{\mu}(h) = \frac{\partial L_{h}(h)}{\partial h_{\mu}}, \quad g_{i}(v) = \frac{\partial L_{v}(v)}{\partial v_{i}}$$

		HN IS ALL YOU NEED	IMIXER	
00000	00000	00000	000000	00

Unification of energy-based associative memory models [Krotov-Hopfield ICLR21]

$$\tau_{v} \frac{dv_{i}(t)}{dt} = \sum_{\mu=1}^{N_{h}} \xi_{i\mu} f_{\mu}(h(t)) - v_{i}(t) \qquad v_{i} \qquad v_{$$

Activation functions f, g are determined by "Lagrangians":

$$f_{\mu}(h) = rac{\partial L_h(h)}{\partial h_{\mu}}, \quad g_i(v) = rac{\partial L_v(v)}{\partial v_i}$$

		HN 15 All You Need	IMIXER	
00000	00000	000000	000000	00

The dynamical equations (update rules for the neurons)

$$\tau_{v} \frac{dv_{i}(t)}{dt} = \sum_{\mu=1}^{N_{h}} \xi_{i\mu} f_{\mu}(h(t)) - v_{i}(t)$$

$$\tau_{h} \frac{dh_{\mu}(t)}{dt} = \sum_{i=1}^{N_{v}} \xi_{\mu i} g_{i}(v(t)) - h_{\mu}(t)$$

 v_i $\xi_{i\mu}$ $\xi_{\mu i}$ $\xi_{\mu i}$ $\xi_{\mu i}$

visible neurons

minimize the energy function

$$E(v,h) = \sum_{i} v_{i}g_{i} - L_{v} + \sum_{\mu} h_{\mu}f_{\mu} - L_{h} - \sum_{\mu,i} f_{\mu}\xi_{\mu i}g_{i}$$

Lagrangians L_v , L_h define a model Generate a family of Hopfield networks

00000 00000 000000 000000 00			HN IS ALL YOU NEED	IMIXER	
	00000	00000	000000	000000	00

The dynamical equations (update rules for the neurons)

$$\tau_{v} \frac{dv_{i}(t)}{dt} = \sum_{\mu=1}^{N_{h}} \xi_{i\mu} f_{\mu}(h(t)) - v_{i}(t)$$

$$\tau_{h} \frac{dh_{\mu}(t)}{dt} = \sum_{i=1}^{N_{v}} \xi_{\mu i} g_{i}(v(t)) - h_{\mu}(t)$$

visible neurons

hidden neurons

minimize the energy function

$$E(v,h) = \sum_{i} v_{i}g_{i} - L_{v} + \sum_{\mu} h_{\mu}f_{\mu} - L_{h} - \sum_{\mu,i} f_{\mu}\xi_{\mu i}g_{i}$$

Lagrangians *L_v*, *L_h* define a model Generate a family of Hopfield networks

	HN IS ALL YOU NEED	IMIXER	
	000000		

Attention as a modern Hopfield Network

"Model B" in [Krotov-Hopfield ICLR21]

$$L_v(v) = rac{1}{2}\sum_i v_i^2, \quad L_h(h) = \log\sum_\mu \exp(h_\mu)$$

Integrate out hidden neurons h_{μ} , discretize the ODE, then

$$v_i(t+1) = \sum_{\mu} \xi_{i\mu} \operatorname{softmax}\left(\sum_j \xi_{\mu j} v_j(t)\right)$$
$$E(\{v_i\}) = \frac{1}{2} \sum_i v_i^2 - \log \sum_{\mu} \exp\left(\sum_i \xi_{\mu i} v_i\right)$$

reproduce [Ramsauer+ ICLR21]

	HN IS ALL YOU NEED	IMIXER	
	000000		

Attention as a modern Hopfield Network

Applications along this line:

- Immune repertoire classification [Widrich+ NeurIPS20]
- Exponential capacity of dense associative memories [Lucibello-Mezard 23]
- Learning with partial forgetting in modern Hopfield networks [TO-Sato-Kawakami-Tanaka-Inoue AISTATS23]
- A family of Boltzmann machines from modern Hopfield networks [TO-Karakida NECO23]
 - Attentional Boltzmann machine is an exactly solvable model

Introduction	Attention is All You Need	HN is All You Need	IMIXER	
00000	00000	000000	000000	

Contents

- 1. Introduction
- 2. Attention is All You need
 - CNN vs Vision Transformer
 - Attention is All You Need?
- 3. Hopfield Networks is All You Need
 - Modern Hopfield networks to the rescue
- 4. iMixer: invertible, implicit and iterative MLP-Mixer from modern Hopfield network

 Introduction
 Attention is All You Need
 HN is All You Need
 iMixer
 Summary

 00000
 00000
 000000
 00
 00
 00

HOPFIELD/MIXER CORRESPONDENCE

MLP-Mixer as Model C of the generalized Hopfield network [Krotov-Hopfield ICLR21; Tang-Kopp 21]

$$L_{v}(v) = \sqrt{\sum_{i} (v_{i} - \bar{v})^{2}}, \quad L_{h}(h) = \sum_{\mu} \phi(h_{\mu})$$

Integrate out hidden neurons h_{μ} , discretize the ODE, then

$$v_i(t+1) = v_i(t) + \sum_{\mu} \xi_{i\mu} \phi' \left(\sum_{j} \xi_{\mu j} \text{LayerNorm}(v(t))_j \right)$$

Token-mixing block of MLP-Mixer [Tolstikhin+ NeurIPS21]

 $Y = X + W_2 \sigma(W_1 \text{LayerNorm}(X))$

 Introduction
 Attention is All You Need
 HN is All You Need
 iMixer
 Summary

 00000
 00000
 000000
 00
 00
 00

Hopfield/Mixer correspondence

MLP-Mixer as Model C of the generalized Hopfield network [Krotov-Hopfield ICLR21; Tang-Kopp 21]

$$L_v(v) = \sqrt{\sum_i (v_i - \bar{v})^2}, \quad L_h(h) = \sum_\mu \phi(h_\mu)$$

Integrate out hidden neurons h_{μ} , discretize the ODE, then

$$v_i(t+1) = v_i(t) + \sum_{\mu} \xi_{i\mu} \phi' \left(\sum_{j} \xi_{\mu j} \text{LayerNorm}(v(t))_j \right)$$

Token-mixing block of MLP-Mixer [Tolstikhin+ NeurIPS21]

$$Y = X + W_2 \sigma(W_1 \text{LayerNorm}(X))$$

	IMIXER	
	000000	

The generalized Hopfield network can *reproduce* many of known NN models. So far so good

A natural question:

The generalized Hopfield network can even *predict* a novel MetaFormer architecture?

Model-C Hopfield network \rightsquigarrow MLP-MixerModel-C hierarchical extension \rightsquigarrow ???

00000	00000	000000	000000	00
			IMIXER	

The generalized Hopfield network can *reproduce* many of known NN models. So far so good

A natural question:

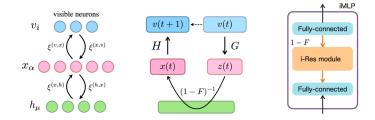
The generalized Hopfield network can even *predict* a novel MetaFormer architecture?

Model-C Hopfield network→→MLP-MixerModel-C hierarchical extension→→???

Introduction	Attention is All You Need	HN is All You Need	1Mixer	
00000	00000	000000	00●000	

IMIXER

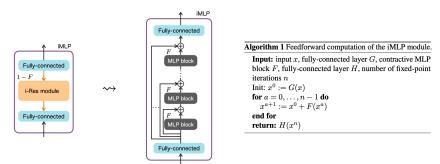
Hierarchical extension



$$L_{v}(v) = \sqrt{\sum_{i} (v_{i} - \bar{v})^{2}}, \quad L_{x}(x) = \sum_{\alpha} \phi_{x}(x_{\alpha}), \quad L_{h}(h) = \sum_{\mu} \phi_{h}(h_{\mu})$$
$$v(t+1) = v(t) + \xi^{(v,x)} \phi_{x}' \Big((1-F)^{-1} \big(\xi^{(x,v)} \text{LayerNorm}(v(t)) \big) \Big)$$
$$F = (\xi^{(x,h)} \phi_{h}') \circ (\xi^{(h,x)} \phi_{x}')$$

Inverted ResNet is an example of implicit NNs

[Behrmann+ ICML19; Bai+ NeurIPS19; El Ghaoui+ 19]



Fixed-point iteration method enables us to easily implement & train the model

Introduction	Attention is All You Need	HN is All You Need	IMixer	
00000	00000	000000	0000●0	
iMixer				

The iMLP module looks somewhat unconventional from CV viewpoint. Experimental evaluation?

Model	Small	Base	Large
Mixer (baseline)	88.08 ± 0.51	89.03 ± 0.24	86.67 ± 0.30
iMixer (ours)	88.56 ± 0.30	89.07 ± 0.33	87.48 ± 0.40

Top-1 accuracy (%), trained on CIFAR-10 from scratch

Top-1 accuracy (%) for other datasets, trained from scratch for Small models

Model	CIFAR-100	Food-101	ImageNet-1k
Mixer-S	$68.13{\scriptstyle~\pm 0.46}$	76.11 ± 0.32	73.91
iMixer-S	68.26 ± 0.30	76.08 ± 0.20	74.10

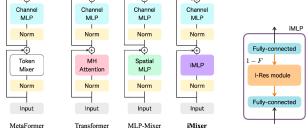
Introduction	Attention is All You Need	HN is All You Need	iMixer	
00000	00000	000000	00000●	

Outlook

Lots of further directions like

- More hidden layers and different Lagrangians
- Practical applications for real computer vision tasks
- Boltzmann machine counterparts of hierarchical Hopfield networks
- More direct relation with associative memory model (in progress with Taki and Karakida)

Any discussions/comments are very welcome



- *Derive* a new MetaFormer model from Hopfield/Mixer correspondence
- Provide a direction for incorporating *implicit* NNs
- Empirical study supports the validity of our formulation

Introduction	Attention is All You Need	HN is All You Need	1M1xer	Summary
00000	00000	000000	000000	0•

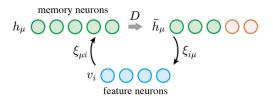
Contents

- 1. Introduction
- 2. Attention is All You need
 - CNN vs Vision Transformer
 - Attention is All You Need?
- 3. Hopfield Networks is All You Need
 - Modern Hopfield networks to the rescue
- 4. iMixer: invertible, implicit and iterative MLP-Mixer from modern Hopfield network

Backup

LwPF

Learning with partial forgetting in modern Hopfield networks [TO-Sato-Kawakami-Tanaka-Inoue AISTATS23]



- Propose learning with partial forgetting (LwPF) mechanism
- Derive the expression for *partially forgetting attention*
- Demonstrate the effectiveness of LwPF in diverse domains

AttnBM

Attention in a family of Boltzmann machines emerging from modern Hopfield networks [TO-Karakida NECO23]

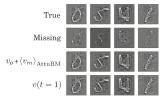


Image reconstruction

Receptive fields

- Propose a family of Boltzmann machines from the generalized Hopfield network
- Investigate the basic properties of *attentional BM* and verify its integrability and trainability

Model A: Dense associative memory models [Hopfield 82; Krotov-Hopfield NeurIPS16; Demircigil +17]

$$L_v(v) = \sum_i |v_i|, \quad L_h(h) = \sum_\mu F(h_\mu)$$

Integrate out hidden neurons h_{μ} , discretize the ODE, then

$$v_i(t+1) = \sum_{\mu} \xi_{i\mu} F'\left(\sum_j \xi_{\mu j} \operatorname{sgn}(v_j(t))\right)$$
$$E(\{v_i\}) = -\sum_{\mu} F\left(\sum_i \xi_{\mu i} \operatorname{sgn}(v_i)\right)$$

Model A: Dense associative memory models [Hopfield 82; Krotov-Hopfield NeurIPS16; Demircigil+ 17]

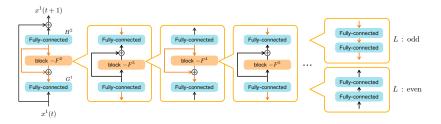
$$v_i(t+1) = \sum_{\mu} \xi_{i\mu} F'\left(\sum_j \xi_{\mu j} \operatorname{sgn}(v_j(t))\right)$$
$$E(\{v_i\}) = -\sum_{\mu} F\left(\sum_i \xi_{\mu i} \operatorname{sgn}(v_i)\right)$$

• $F(x) = x^2$: the classical Hopfield network, $sgn(v_i(t)) =: s_i(t)$

- $F(x) = x^n$: the network can store $\mathcal{O}(N_v^{n-1})$ memories
- $F(x) = e^x$: exponential storage capacity

IMIXER: A GENERAL FORMULATION

One of the most general formulations of iMixer from *L*-layer hierarchical Hopfield network:



$$x^{1}(t+1) = x^{1}(t) + iMLPs(x^{1}(t))$$

IMIXER: EXPERIMENTAL DETAILS

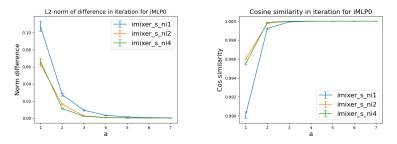
Hyperparameters commonly used for the vanilla Mixer and iMixer for fair comparison.

Training configuration	Small/Base/Large
optimizer	AdamW
training epochs	300
batch size	512/256/64
base learning rate	5e-4/2.5e-4/6.25e-5
weight decay	0.05
optimizer ϵ	1e-8
optimizer momentum	$\beta_1 = 0.9, \beta_2 = 0.99$
learning rate schedule	cosine decay
lower learning rate bound	1e-6
warmup epochs	20
warmup schedule	linear
warmup learning rate	1e-6
cooldown epochs	10
crop ratio	0.875
RandAugment	(9, 0.5)
mixup α	0.8
cutmix α	1.0
random erasing	0.25
label smoothing	0.1
stochastic depth	0.1/0.2/0.3

IMIXER: EXPERIMENTAL DETAILS

Hyperparameter search for h_r and n in iMixer-S, trained on CIFAR-10 from scratch

h_r	n = 1	n = 2	n = 4
0.25	88.26 ± 0.28	88.22 ± 0.33	88.29 ± 0.37
0.5	88.32 ± 0.39	88.21 ± 0.45	88.22 ± 0.43
1	88.36 ± 0.31	88.32 ± 0.32	88.32 ± 0.32
2	88.54 ± 0.34	88.56 ± 0.30	88.46 ± 0.26



Convergence rate of L_2 -norm (left) and cosine similarity (right) between two successive feature vectors in fixed-point iteration in iMLP-0

Hopfield/Mixer correspondence for MetaFormers architecture design

Toshihiro Ota