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Today’s main message:

• Hopfield/Mixer correspondence as an approach for
MetaFormes architecture design

Based on the correspondence, we theoretically predict

iMixer: a novel MetaFormer model from
hierarchical Hopfield network [TO-Taki, 2304.13061]
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Attention is All You Need

Transformer in our everyday life [Vaswani+ NeurIPS17, Fig. 1]

Large success across nearly all domains
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Attention is All You Need

An image is worth 16x16 words: Vision Transformer

[Dosovitskiy+ ICLR21; Touvron+ ICML21; . . . ]
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Attention is All You Need?

MetaFormers (MLP-Mixer, Conv/Pool/Rand/Identity-Former,
. . . ) [Tolstikhin+ NeurIPS21; Melas-Kyriazi 21; Yu+ 22]

[Yu+ CVPR22, Fig. 1a]
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iMixer: invertible, implicit and iterative MLP-Mixer

• Derive a new MetaFormer model from
Hopfield/Mixer correspondence

• Provide a direction for incorporating implicit NNs

• Empirical study supports the validity of our formulation
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Convolutional Neural Network

https://en.wikipedia.org/wiki/Convolutional neural network

respects

• Locality
• Translation invariance

 “inductive bias”
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Vision Transformer

An image is worth 16x16 words [Dosovitskiy+ ICLR21, Fig. 1]

Quite less inductive bias than CNN
Hopfield/Mixer correspondence for MetaFormers architecture design Toshihiro Ota
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Vision Transformer

Attention mechanism:

Y = Attn(X) = V>softmax
(

KQ>
)

Q = WQX, K = WKX, V = WVX
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Attention is All You Need?

Casted doubt on the role of attention module: MLP-Mixer
Mixer Layer

[Tolstikhin+ NeurIPS21, Fig. 1] Spatial MLP:

Y = W2σ(W1X)

Simpler than attention mechanism and yet less inductive bias
Hopfield/Mixer correspondence for MetaFormers architecture design Toshihiro Ota
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Attention is All You Need?

MetaFormers [Yu+ CVPR22, Fig. 1a]

Token-mixing block:

Y = X + TokenMixer(Norm(X))
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Classical Hopfield network

A classical associative memory model [Hopfield 82]

Update rule~s← sgn(J~s) minimizes the energy function,

E(~s) = −
∑
i 6=j

Jijsisj, J :=
∑
µ

~ξµ~ξ
>
µ , si ∈ {±1}
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Classical Hopfield network

A classical associative memory model [Hopfield 82]
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Hopfield Networks is All You Need

Attention = a Hopfield update rule [Ramsauer+ ICLR21, Fig. A.7]

vi ∈ R,

ξ = (~ξ1, . . . , ~ξN)>

Update rule

vi ←
∑
µ

ξiµsoftmax
(∑

j
ξµjvj

)
minimizes an energy function

E({vi}) =
1
2
∑

i
v2

i − log
∑
µ

exp

(∑
i
ξµivi

)
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Generalized Hopfield network

Unification of energy-based associative memory models
[Krotov-Hopfield ICLR21]

τv
dvi(t)

dt
=

Nh∑
µ=1

ξiµfµ(h(t))− vi(t)

τh
dhµ(t)

dt
=

Nv∑
i=1

ξµigi(v(t))− hµ(t)

Activation functions f , g are determined by “Lagrangians”:

fµ(h) =
∂Lh(h)

∂hµ
, gi(v) =

∂Lv(v)

∂vi
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Generalized Hopfield network

The dynamical equations (update rules for the neurons)

τv
dvi(t)

dt
=

Nh∑
µ=1

ξiµfµ(h(t))− vi(t)

τh
dhµ(t)

dt
=

Nv∑
i=1

ξµigi(v(t))− hµ(t)

minimize the energy function

E(v, h) =
∑

i
vigi − Lv +

∑
µ

hµfµ − Lh −
∑
µ,i

fµξµigi

Lagrangians Lv, Lh define a model
Generate a family of Hopfield networks
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Attention as a modern Hopfield network

“Model B” in [Krotov-Hopfield ICLR21]

Lv(v) =
1
2
∑

i
v2

i , Lh(h) = log
∑
µ

exp(hµ)

Integrate out hidden neurons hµ, discretize the ODE, then

vi(t + 1) =
∑
µ

ξiµsoftmax

∑
j
ξµjvj(t)


E({vi}) =

1
2
∑

i
v2

i − log
∑
µ

exp

(∑
i
ξµivi

)

reproduce [Ramsauer+ ICLR21]
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Attention as a modern Hopfield network

Applications along this line:

• Immune repertoire classification [Widrich+ NeurIPS20]

• Exponential capacity of dense associative memories
[Lucibello-Mezard 23]

• Learning with partial forgetting in modern Hopfield
networks [TO-Sato-Kawakami-Tanaka-Inoue AISTATS23]

• A family of Boltzmann machines from modern Hopfield
networks [TO-Karakida NECO23]

– Attentional Boltzmann machine is an exactly solvable model
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Hopfield/Mixer correspondence

MLP-Mixer as Model C of the generalized Hopfield network
[Krotov-Hopfield ICLR21; Tang-Kopp 21]

Lv(v) =

√∑
i

(vi − v̄)2, Lh(h) =
∑
µ

φ(hµ)

Integrate out hidden neurons hµ, discretize the ODE, then

vi(t + 1) = vi(t) +
∑
µ

ξiµφ
′

∑
j
ξµjLayerNorm(v(t))j


Token-mixing block of MLP-Mixer [Tolstikhin+ NeurIPS21]

Y = X + W2σ(W1LayerNorm(X))
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The generalized Hopfield network can reproduce many of known
NN models. So far so good

A natural question:

The generalized Hopfield network can even predict
a novel MetaFormer architecture?

Model-C Hopfield network  MLP-Mixer
Model-C hierarchical extension  ???
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iMixer

Hierarchical extension

Lv(v) =

√∑
i

(vi − v̄)2, Lx(x) =
∑
α

φx(xα), Lh(h) =
∑
µ

φh(hµ)

v(t + 1) = v(t) + ξ(v,x)φ′x

(
(1− F)−1(ξ(x,v)LayerNorm(v(t))

))
F = (ξ(x,h)φ′h) ◦ (ξ(h,x)φ′x)
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iMixer

Inverted ResNet is an example of implicit NNs
[Behrmann+ ICML19; Bai+ NeurIPS19; El Ghaoui+ 19]

Fixed-point iteration method enables us to easily implement &
train the model
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iMixer

The iMLP module looks somewhat unconventional from CV
viewpoint. Experimental evaluation?

Top-1 accuracy (%), trained on CIFAR-10 from scratch

Model Small Base Large

Mixer (baseline) 88.08 ±0.51 89.03 ±0.24 86.67 ±0.30

iMixer (ours) 88.56 ±0.30 89.07 ±0.33 87.48 ±0.40

Top-1 accuracy (%) for other datasets, trained from scratch for Small models

Model CIFAR-100 Food-101 ImageNet-1k

Mixer-S 68.13 ±0.46 76.11 ±0.32 73.91
iMixer-S 68.26 ±0.30 76.08 ±0.20 74.10
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Outlook

Lots of further directions like

• More hidden layers and different Lagrangians

• Practical applications for real computer vision tasks

• Boltzmann machine counterparts of hierarchical Hopfield
networks

• More direct relation with associative memory model (in
progress with Taki and Karakida)

Any discussions/comments are very welcome
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iMixer: invertible, implicit and iterative MLP-Mixer

• Derive a new MetaFormer model from
Hopfield/Mixer correspondence

• Provide a direction for incorporating implicit NNs

• Empirical study supports the validity of our formulation
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LwPF

Learning with partial forgetting in modern Hopfield networks
[TO-Sato-Kawakami-Tanaka-Inoue AISTATS23]

• Propose learning with partial forgetting (LwPF) mechanism

• Derive the expression for partially forgetting attention

• Demonstrate the effectiveness of LwPF in diverse domains
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AttnBM

Attention in a family of Boltzmann machines emerging from
modern Hopfield networks [TO-Karakida NECO23]

Image reconstruction Receptive fields

• Propose a family of Boltzmann machines from the
generalized Hopfield network

• Investigate the basic properties of attentional BM and verify
its integrability and trainability
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Generalized Hopfield network

Model A: Dense associative memory models [Hopfield 82;

Krotov-Hopfield NeurIPS16; Demircigil +17]

Lv(v) =
∑

i
|vi|, Lh(h) =

∑
µ

F(hµ)

Integrate out hidden neurons hµ, discretize the ODE, then

vi(t + 1) =
∑
µ

ξiµF′
∑

j
ξµj sgn

(
vj(t)

)
E({vi}) = −

∑
µ

F
(∑

i
ξµi sgn(vi)

)
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Generalized Hopfield network

Model A: Dense associative memory models [Hopfield 82;

Krotov-Hopfield NeurIPS16; Demircigil+ 17]

vi(t + 1) =
∑
µ

ξiµF′
∑

j
ξµj sgn

(
vj(t)

)
E({vi}) = −

∑
µ

F
(∑

i
ξµi sgn(vi)

)

• F(x) = x2: the classical Hopfield network, sgn(vi(t)) =: si(t)

• F(x) = xn: the network can store O(Nn−1
v ) memories

• F(x) = ex: exponential storage capacity
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iMixer: a general formulation

One of the most general formulations of iMixer from
L-layer hierarchical Hopfield network:Fully-connected

Fully-connected

MLP block
�F 2

Fully-connected

Fully-connected

MLP block

Fully-connected

Fully-connected

MLP block

Fully-connected

Fully-connected

MLP block
�F 3 �F 4

�F 5

x1(t + 1)

x1(t)

G1

H2

Fully-connected

Fully-connected

Fully-connected

Fully-connected

…
L : even

L : odd

…
Fully-connected

Fully-connected

block �F 2

Fully-connected

Fully-connected

block

Fully-connected

Fully-connected

block

Fully-connected

Fully-connected

block�F 3 �F 4

�F 5

x1(t + 1)

x1(t)

G1

H2

x1(t + 1) = x1(t) + iMLPs(x1(t))
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iMixer: experimental details
Hyperparameters commonly used for the vanilla Mixer and iMixer for fair comparison.

Training configuration Small/Base/Large

optimizer AdamW
training epochs 300
batch size 512/256/64
base learning rate 5e-4/2.5e-4/6.25e-5
weight decay 0.05
optimizer ε 1e-8
optimizer momentum β1 = 0.9, β2 = 0.999
learning rate schedule cosine decay
lower learning rate bound 1e-6
warmup epochs 20
warmup schedule linear
warmup learning rate 1e-6
cooldown epochs 10
crop ratio 0.875
RandAugment (9, 0.5)
mixup α 0.8
cutmix α 1.0
random erasing 0.25
label smoothing 0.1
stochastic depth 0.1/0.2/0.3
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iMixer: experimental details
Hyperparameter search for hr and n in iMixer-S, trained on CIFAR-10 from scratch

hr n = 1 n = 2 n = 4

0.25 88.26 ±0.28 88.22 ±0.33 88.29 ±0.37
0.5 88.32 ±0.39 88.21 ±0.45 88.22 ±0.43
1 88.36 ±0.31 88.32 ±0.32 88.32 ±0.32
2 88.54 ±0.34 88.56 ±0.30 88.46 ±0.26

Convergence rate of L2-norm (left) and cosine similarity (right)
between two successive feature vectors in fixed-point iteration in iMLP-0
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