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自己紹介

• 専門　コライダー物理・ダークマター（理論）　LHC, ILC, 宇宙線によるダーク
マターの探索   

• コライダー物理　高いエネルギーの粒子を衝突させることによって、より高
いエネルギーの物質像を探る。 

• LHC ヒッグス粒子を発見(2012) さらにヒッグス粒子の精密測定、暗黒物質
の探索などを通じて素粒子の性質を究明 

• e-Print 2010.13469, JHEP 07 (2020) 111,  JHEP 07 (2019) 135 JEP 
10(2018) 181 等に基づいてジェットの深層学習の解釈可能性を調べている。 

• 最近やってる別のこと　Jeans 方程式をGAN で解いて、暗黒物質密度を決め
る。（また呼んでください。） 

• なぜ深層学習をはじめたか（もごもご）



DONEC QUIS NUNC

LHC実験とは



コライダー物理と機械学習・深層学習

• 「一つしかない自然の理解」系統誤差のタイミン
グのよい理解が重要　目標は　0.1%  

• ハドロンコライダー特有の難しさ 

• 測定側　自動化・高速化(1GHz でイベントが
来る、衝突点が100 あるとか） HL-LHC 30倍
のデータがくる 

• 理論側:  QCD の理解 

• 機械学習：BDT (決定木）2002 ~ 深層学習(CNN
等）５年ほど特に粒子飛跡の解明で大きな成果

実験のトリガー システム
の高ルミノシティ 時では、 回のビーム・クロッシングに対して、平均約 個の

イベントが発生する。これら大量のイベントのなかから、物理的に重要なイベントを選択し効率よくデー
タを収集するためには、トリガー・システムの役割が重要になってくる。
ここでは、 実験のトリガー・スキームを概観した後、 トリガー、特に、ミューオン・トリ

ガー・システムについて述べる 。

トリガー・スキーム

実験でのトリガー、 システムは図 のように、 段階のトリガー・レベル
イベント・フィルター から成り立つ。各レベルで条件を順に付加していき、最終的に目的にあったイベン
トだけをオフライン用のデータとして記録する。

LEVEL 2
TRIGGER

LEVEL 1
TRIGGER

CALO MUON TRACKING

Event builder

Pipeline
memories

Derandomizers

Readout buffers
(ROBs)

EVENT FILTER

Bunch crossing
rate 40 MHz

< 75 (100) kHz

~ 1 kHz

~ 100 Hz

Interaction rate
~1 GHz

Regions of Interest Readout drivers
(RODs)

Full-event buffers
and

processor sub-farms

Data recording

図 におけるトリガースキーム

このトリガー・レベルでは、カロリメータとミューオン検出器からの情報だけが使われる。各検出器
からのシグナルは、それぞれのサブ・システムで処理されたのち、
に集められ、イベントを受け入れるかどうかが決定される。イベントが発生してから、この決定が全
サブ・システムに伝えられるまでに要するまでの時間は で、その間、データは バッファ
と呼ばれるパイプ・ライン・メモリー内に保持される。この段階で、はじめ であったデー
タ・レートが にまで落される。

では、カロリメータ、ミューオン検出器に加えて、内部飛跡検出器からの詳細情報も利用し、
粒子の飛跡とその を求めるなど、より複雑な選択を行なう。このとき、 の電子、光子、

実験

理論の予言 大量のデータ

新物理（ダークセクターなど）

LHC実験はデータ取得も大変

1999年



DONEC QUIS NUNC

LHC の物理（ミニマム）

ハードプロセス 
（摂動的）

パートンシャワー 
(リサメーション）

ハドロン化 
（非摂動的）

ビーム 

パートン 
(クオークやグルーオン）



イベントに隠れる特殊な粒子!
H→ qq 

深層学習のジェット物理への応用の理想 
ぐちゃぐちゃのイベントの中から 

素敵なものだけ見つけ出してきてほしい　

t-> qlν
t-> qlν



イベントに隠れるカラーを持たない粒子
H→ qq 

深層学習のジェット物理への応用の理想 
ぐちゃぐちゃのイベントの中から 

素敵なものだけ見つけ出してきてほしい　



LHCイベント　ジェットとジェットイメージ

Jets as Images 11

• A jet induces a distribution of  energy over 2 − 4
– Essentially how energy from a jet is seen by calorimeters

• Jet-image – fixed size 2D representation of  the jet 
as a distribution of  energy
– Can make use of  the full power of  Computer Vision!

Jet

Jet	Image

Jet image 

η 

φ
(η, φ, pT)

Rij=(ηi-ηj) 2+(φi-φj)2 



パートン（q g）→ジェット
• パートンシャワー 

• クオークやグルーオンがハードなプロセスから生まれるとそ
こからたくさんのクオーク、グルーオンが生成される仕組み 

• 運動量の関係 

• q12→ q22　→ q32 .. (mass ordering)  

•  p→p1+ p2,   (p2)-1 = (2 p1p2)-1 散乱断面積は　p1 p2 が同方向
( collinear) あるいは p2~0 で発散　(Soft Collinear Singlality) 

• θ1> θ２>θ３…. (angular ordering) Higgs 粒子　W 粒子　
(weak boson) -> qq  parton shower は、qq の間にだけでる

C0αLog2 (q1/q2)+C1αLog (q1/q2) Learning from the Machines 16
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Learning about learning

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Advantage of CNN is that we can visualize the filters
Filters Filters	convolved	with	images

Average	of	most	activating	jets for	a	given	neural

Additional	radiation	in	QCD	jets

signal-like
background-like

Soft	QCD	gluon	
emission

arXiv:1511:05190

Higgs的 

QCD 的

カラーシングレット粒子の崩壊は 
ロングレンジでみるとQCDで粒子を放出しない。



• パートンからハドロン(モデルあれど理論なし） 

• Quark gluon 同士をつなぐカラーか伸びると qqbar がうまれてハドロンになる 

• Jet clustering （粒子を相互の関係によってまとめて、ひとかたまりのオブジェクト
にまとめる 

• Parton が２つにわかれても、ハドロンに
なってもアウトプットが同じであるよう
なアルゴリズムを探す( IRC safe ) 
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CA Clustering Soft Drop Grooming

particles

subjets

jet

Kept (Θsd)

Rejected (Θsd)

Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches
that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut
and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij

R0

)β

, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi − ηj)− cos(φi −

φj)
)
or R2

ij =
√

(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η,φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2
sin(θij/2)

sin(Ree
0 /2)

)β

. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.

– 4 –

ジェット 
親粒子粒子(ハドロン）

ストリングモデルとクラスターモデルストリングモデル

IRC safe 



今後のLHC 高輝度化

• より高いエネルギーをもつ top quark や、Higgs boson などに興味
が移ってくる 

• QCD ジェットと boost された top Higgs などの重たい粒子がよく似
ている。　ここに機械学習や深層学習を使うことが注目されている。



13~ 6 桁にわたる pQCD の精密試験に基づき TeV スケールの物理を遂行中



機械学習 とPARTICLE  TAGGING

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer

h(n)
k,xy = '(

X

�x ,�y

w (n)
k`,�x�y

h(n�1)
`,(x+�x )(y+�y ) + b(n)

k )

Convolution

f ⇤ g(x) =

Z
dx 0f (x 0)g(x � x 0)

Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron

x1

·
·
·

xn

wi1

·
·
·

win
bi

P
'(·) '(wijxj + bi )

inputs weights bias activation output reduced notation

Build a network architecture
x1

x2

x3

ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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CNN　特徴量とか気にせず,がんがんジェットイメージを入れてやらせてみよう(2015~ 

ジェットの特徴量をつかった BDT 　

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

N-subjettiness,  

ジェットの運動量, 質量, … 

Core 2 

Core 1 

𝞃2 LARGE > Τ3 SMALL 

エネルギーで weight するのは、 

IRC safe にするため

Jet 内の全ての粒子でsum 
N 個の中心がある 
として最小化

(pTij, i、j) 



深層学習とJETの分類

• 多くの実装: CNN, ResNeXT, Particle Net… 

>> BDT>> cut base.  

• なんの効果でよくなるかが不明(というか気
にしないスタンス） 

• ジェット画像の特性上, 中心には多くのヒッ
トがあるが、外側のヒットは少ない。分散も
大きい。CNN が非効率　→graph network 

• Particle net “周辺”の object からoutput → 

そこからアウトプット→  ほんとにそこまで
しないといけないのか。

SciPost Physics Submission

Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on
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物理から考える：安心できる量と不安な量

• IRC safe な量: soft or collinear emission に対して安定な量:subjet  

• QCD補正に対して不安定な量,例えば運動量の低い粒子数はMC modeling に大
きな差 (Pythia vs Hewig  vs 実験データなど） 系統誤差に問題あり 

→Jet Image　の利用: 　両者の間の区別が不明確　系統誤差の評価に問題
はないか。実データで補正できるのか。 

• 理論：ジェットの構造の中で理論の記述できる量を精査して、それだけ使えば
よいのでは？

摂動論

非摂動 



IRC safe な量だけではベストな結果はでない

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

In the next section, we will study the information contained in this basis and use it to

identify the features that are exploited in the discrimination of hadronically decaying Z boson

jets from QCD jets.

3 Deep Learning Implementation

In this section, we describe our event simulation and implementation of machine learning to the

N -subjettiness basis of observables introduced in the previous section. We generate pp ! Z+

jet and pp ! ZZ events at the 13 TeV LHC with MadGraph5 v2.5.4 [35]. The Z boson in

pp ! Z+ jet events is decayed to neutrinos, while one Z boson in pp ! ZZ events is decayed

to neutrinos, while the other is decayed to quarks. These tree-level events are then showered

in Pythia v8.223 [36, 37] with default settings. In App. B, we will show results showered with

Herwig v7.0.4 [38, 39], however with one-tenth the number of events as the Pythia samples.

Ignoring the neutrinos in the showered and hadronized events, we use FastJet v3.2.1 [40, 41]

to cluster the jets. On the clustered anti-kT [42] jets with radius R = 0.8 and minimum pT

of 500 GeV, we then measure the basis of N -subjettiness observables using the code provided

in FastJet contrib v1.026. We emphasize that observables are measured on the particles as a

proof of concept; we do not apply any detector simulation.

The precise set of observables we measure on the jet that we use for discrimination are the

following. We measure the jet mass and the collection of N -subjettiness observables su�cient

to completely determine up through 6-body phase space. That is, we measure the collection

of N -subjettiness observables defined with kT axes:
n

⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(1)
5 , ⌧

(2)
5

o
. (3.1)

We will see that this collection of N -subjettiness observables is more than su�cient to de-

scribe all of the information useful for discrimination in the jet. Additionally, for comparison,

we will measure a collection of standard observables that have been defined for discrimina-

tion of boosted, hadronic decays of Z bosons from jets initiated by QCD. We measure the

N -subjettiness ratios ⌧
(1)
2,1 and ⌧

(2)
2,1 with one-pass winner-take-all (WTA) axes [32–34], and

(generalized) energy correlation function ratios D
(1)
2 and D

(2)
2 [43] and N

(1)
2 and N

(2)
2 [28].

The discrimination power of these observables will provide a benchmark for the information

extracted in the machine learning of the collection of N -subjettiness observables.

All deep learning analysis was carried out on the NVIDIA DIGITS DevBox, with four

GeForce GTX TitanX GPUs, built on the 28 nm Maxwell architecture. The specifications of

the GPU are listed in Table 1. Only one GPU was used during training and testing.

CUDA
cores

Base/Boost.
clock (MHz)

Memory size
(GB)

Memory
clock (Gbps)

Interface
width

Memory
Bandwidth
(GB/s)

3072 1000/1075 12 7.0 384-bit 336.5

Table 1: Manufacturer specifications of the GTX TitanX.
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SciPost Physics Submission

Sample mass + CNN1 mass + 3-body mass + 5-body
Top pT 2 [350� 400] GeV 0.9626 0.9503 0.9613
Top pT 2 [500� 550] GeV 0.9678 0.9535 0.9658

Top pT 2 [1300� 1400] GeV 0.9698 0.9607 0.9723

Table 2: The area-under-curve (AUC) values for a selection of our ROC curves. Larger values
are better and AUC=1 corresponds to perfect signal and background discrimination.

Figure 4: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [350, 400] GeV. Adding mass information improves the performance of the
image networks and the n-subjettiness network.

Figure 5: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [500, 550] GeV. In this case the performance after adding mass information is
very similar.
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CNN vs N-subjettniess MLPを比較する 

 Liam Moore et al  1807.04769

arXiv 1704.08249 Datta Larkoski 

N-subjettiness MLP classification 

Core2  

とても高い次数の τ(n点相関)をいれると
なんとかCNNと同じになる。 

なんでそんなものが必要なの？　IRC 

unsafe な量はどういうふうに効いてい
るの？お任せしちゃって大丈夫なの？



• ジェットの中には、理論的に予言ができる量（IRC safe な量）と難
しい量がある。特に難しいのは、ジェットの中にある、ランダムで
エネルギーの低い粒子分布　 

• CNNはそういう量も使っているのではないか。 

• そのようなデータはジェットの外側に分布していて、変動も大き
い。 

ランダムな点分布を定量化する、よい量はないか。

ここまでのまとめ



Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and

4

ミンコフスキー汎関数で 
ジェットのソフトな粒子分布の定量化
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N dim 空間→  N+1 個の独立汎関数が

Area

Perimeter 

Euler  
characteristic  The definition of N

(i) is also described as area. Define P(i) as the surface of the pixels whose
center is at v 2 Vi, and A

(i) is the area of P(i),

A
(i) = (�R)2 ⇥ N

i (3.8)

Therefore, our N
i (i = 0, 1, ...) essentially works as A(r).

According to Hadwiger’s theorem, there are only d + 1 functionals ! R, M
(i)(i=1,...d+1), in

d dimension, that satisfies the feature associated with rigid body,

• Motion invariance: M(gB) = M(B) where g is element of the group of rigid motion G,
and B convex ring R of all finite unions of convex bodies in R

n.

• Additivity M(B1
S

B2) = M(B1) + M(B2) � M(B1
T

B2) for any B1 and B2 2 R

• Conditional continuity M(Ki) ! M(K) as K1 ! K for K, Ki 2 R,

and they are called Minkowski functional. For K(r) they are is length of boundary (L(r)) and Euler
characteristic �(r) in addition to the area A(r). For digitalized version, P(i) we can also define the
boundary length L

i and Eular characteristic of �
(i). If P(i) is the sum of the su�ciently isolated �

convex, N
(1) = N

(0) + 4L
(0) + 4�. Therefore, N

1 might be sensitive to the number of isolated soft
clusters.

(Mihoko: up to here)

Note that the quantity has been applied in astrophysics to quantity the distribution of astro-
physical objects. In [38, 39], Minkowski function is used to identify the topologically nontrivial void
structure of the astrophysical objects. In more recent papers, persistent topology turns out to be
useful tool to identify the topology and scale of the seeming random distribution of the points by
identifying the value of r where Eular characteristic change its value. refer everybody Figure
..(4) shows an example that non-trivial change of the topology occurs by increasing i. In this case,
Eular characteristic and L

(i) behaves as

�
(i) = (6, 0, 0, 1, · · · )

L
(i)

/(0.1) = (24, 55, 52, 54, · · · ). (3.9)

We can see the change of Eular characteristic, together with non-trivial decrease of L
(i) Utilizing

such topological information might be interesting additional information to classify jets, but it is
outside the scope of this paper. Figure... shows example of Pi (i = 0, 1, 2, 3, 4) of a top and QCD
jets. Each jet has di↵erent sequence of A

(i), L
(i) and �

(i), however, as we will see in the next section,
N

(0) and N
(1) turns out to be su�cient information to describe contribution of soft structure to

the top-QCD jet classification using CNN.

4 Implementation of top tagger

(Network inputs)

In this section, we discuss the setup of classifiers using the inputs discussed in the previous
sections. We use the discretized input to feed them to the neural networks. Since we use calorimeter
deposit to construct jet, we bin the spectrum S2,ab by the calorimeter angular resolution �R = 0.1,
i.e.,

S
i

2,ab
=

1

�R

Z (i+1)�R

i�R

dR S2,ab(R) =
1

�R

X

i2Ja,j2Jb
Rij2[i�R,(i+1)�R)

pT,ipT,j (4.1)

We categorize the inputs into 4 set x2,trim, xJ1 , xkin, and xgeometry ,
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をみたし、並進、回転不変 



MF の他の物理応用

• 天文: 星の分布の定量化、 銀河分
布、シミュレーション結果の定量
化、non-Gaussianity of CMB, 

weak lensing..  

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

統計物理 
左 多孔質体　 

真ん中: 微乳濁液 

 左 コロイド 

体積の占有状況V, 表面の大きさ(S) 等に依
存して物性が変わる　図は　Mecke and 

Stoyan (2000) 6

-0.124                            -0.009                             0.106                              0.221

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic

ellipticity noise from source galaxies and ✓G = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin
2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three di↵erent convergence thresholds , i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are  = 0.0 (top right),  = 0.02 (bottom

left), and  = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler

characteristic (or genus), respectively, of the black regions as a function of threshold.

find excellent agreement out to ` ⇠ 20, 000 for zs = 1 and
out to ` ⇠ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [33], we notice that
the drop-o↵ in power has been pushed out to higher `,

due to the increased resolution of the density planes.
Our results rely mostly on the cosmology-dependence

of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the di↵erences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the

Kratochvil  1109.6334   Proving Cosmology  
with Weak Lensing Minkowski Functionals

点の集まりの意味を定量的に表現する時に使う



ジェット物理への応用

• 基本的に良いことばかり 

• 0を並べるような無駄な情報や、位置
情報のロスがない。 

•  ジェットイメージのピクセルのふら
つき O(1) が 1/√Npixel に下がってい
る。Loss 関数の最小化に貢献。  

• すべての点が同等に扱われていること
は、現代的なジェットのアルゴリズム
に合致する。 

• 同方向のパートンの分岐に関して安定

Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and
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A1/A0=16/9=1.78 

ジェットの物理への組み込みかた

•   A1/A0の場合 
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Integral Geometry of Soft Emission

One may borrow idea from integral geometry to analyze the

geometry of soft emission. Consider a Minkowski sum of jet images

and square and count number of pixels of the sum. 

3x3 square

See also: 

   Minkowski Functionals for cosmology: arXiv: astro-ph/9508154

   Hadwiger’s theorem

3x3 mask A(1)=25A0 =Apixel=3
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.

all pixel appear in 3x3 

•  3x3 , 5x5.. のマスクをヒットに用意　A0-> A1 -> A2… 

VS 

Isolated points 

2

FIG. 1. Binary jet images of a dark jet (left) and a QCD
jet (right). Black dots are the active pixels in P 0 without
any filtering. Dark gray, gray, blue, and light blue pixels are
pixels in P (i)�P (i�1) for i = 1, 2, 3, 4, respectively (see text).
Both binary images have A(0) = 30. The dark jet has logits
of the RN output 7.5 and of CNN output 7.6. The QCD jet
has logits of the RN output -28.0 and of CNN output -39.0.

tify semi-visible jets originating from a toy dark sector
[28, 29]. The semi-visible jets have significantly di↵er-
ent MF distributions than QCD jets originating from the
quarks and gluons, and the MFs may take an important
role in the classification. We also test the model in top
jet tagging and find that the classification performance
is similar or better than a convolutional neural network
(CNN), with O(10) times less computational power and
memory consumption.

The morphological analysis on jet constituents is per-
formed on the filtered distribution of jet constituents pro-
jected on (⌘, �) plane. To analyze soft and hard jet con-
stituents separately, the jet constituents with pT below
a threshold are filtered out [20, 27]. For the analysis
of pixellated jet images, we use the following pT thresh-
olds: default threshold of the detector simulation1, 2,
4, and 8 GeV. The resulting binary images on a two-
dimensional integer grid2 are used for the morphological
analysis. Sample binary images are in Fig. 1.

To understand the morphology of the binary images,
we analyze the MFs of the images after some dilation
by a square. The dilation is useful for probing geometric
features that is visible at a angular resolution of the char-
acteristic length scale of the structuring element. For the
pixellated image analysis, we may use a square with side
length 2k+1 as a structuring element of the dilation and
consider the resulting image as P (k),

P (k) = {a + b | a 2 P (0), b 2 B(k)}, (1)

B(k) = {(i, j) | i, j 2 {�k, �k + 1, ...k � 1, k}} (2)

1 0.5 GeV for the electronic calorimeters and 1.0 GeV for the
hadronic calorimeters. This filtering is performed before the
pixellation.

2 The physical unit length of the grid is the hadronic calorimeter
resolution 0.1.

where P (0) is the set of integer coordinates of the selected
pixels of the original binary image. Note that multiplying
the angular resolution �R = 0.1 to the integer coordi-
nates gives us the physical pseudorapidity-polar coordi-
nates (⌘, �). For the analysis in two dimension, there are
three Minkowski functionals (MFs): area (A), perimeter
(L), and Euler characteristic (�) of the image after the
dilation. We denote the three MFs of P (k) as A(k), L(k),
and �(k).

The Hadwiger’s theorem also implies that the elements
of the sequences A(k), L(k), and �(k) satisfies a recurrence
relation when there is no changes in shape and topology
by dialation.

A(k+1) = A(k) + L(k) + 4�(k),

L(k+1) = L(k) + 8�(k), �(k+1) = �(k) (3)

The deviation from this relation can be understood that
some change has been made at the given angular scale.
Therefore, the analysis on these sequences of MFs can be
considered as a persistent analysis on geometric features
of jet substructures, similar to [30]. These sequences are
also useful as inputs to a neural network for analyzing
the geometric features since typical neural networks start
from a linear combination of the inputs.

Although those MFs are global features of a binary im-
age, they can be written as a sum of local contributions
from 2 ⇥ 2 subimages. Since there are only 16 configura-
tions for the 2⇥2 subimages, we may use a look-up table
v for parameterizing the local contribution [31].

(A(k), L(k), �(k)) =
X

i,j

X

n,m2{0,1}

v
⇣
P (k)

(i+n)(j+m)fnm
⌘

(4)

where fnm = ((1, 2), (4, 8)), and P (k)
ij is 1 or 0 if (i, j)-th

pixel of P (k) is active or not active, respectively.
This algorithms are for square integer lattices, but we

may use hexagonal pixels or marching square algorithms
[32] for approximating MFs without pixellations.

Equation 4 indicates that the MFs can be approxi-
mated by a deep convolutional neural network (CNN).
This is fully discribed in the Appendix. Note that Eq. 4
essentially consists of two components: 2⇥2 convolution
between P (k) and f , and a scalar function v. The stacked
convolutional layers can model this , i.e., the weights of
the first convolutional layer is f and later layers can be
considered as a multilayer perceptron (MLP) that models
v. The filtering by pT is also a local operation that can
be approximated by a CNN. Dilation can be written in
a step function of convolution between the P (0) and the

structuring element B, i.e, P (k)
ij = ✓(P (0)

(i+n)(j+n)Bnm).

Therefore, A(k), L(k), and �(k) are covered by a CNN
trained on jet images. But this expression contains a
step function, which have a point of discontinuity. In
the asymptotic limit of the CNN, this does not mat-
ter much thanks to the universal approximation theorem

B(1)P(0) P(1)



ミンコフスキー汎関数とCNN の関係
• ミンコフスキー汎関数(MF) は　CNN のフィルターの形で書くこと
ができる
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Fig. 1. Structure quantification via Minkowski functionals. a) Counts
map, simulated Poisson-distributed random number of counts k. To
characterize the morphology, the image is turned into a black-and-white
image via thresholding – see b); the three Minkowski functionals are
then evaluated for the b/w image. b) Area A. c) Perimeter P. d) Euler
characteristic χ.

is explained in Sect. 3.1 using a global null hypothesis. The
technique is extended in Sect. 3.2 to local structure deviations
found with Minkowski sky maps, which allows one to resolve
and localize the gamma-ray sources. Section 3.3 applies the
analysis to simulated data. Finally, the results for counts maps
observed with H.E.S.S. are given in Sect. 4.

2. Structure characterization

This section describes the structure characterization of a
gamma-ray counts map. While similar methods may be used to
quantify the morphology of extended gamma-ray sources, this
is not the subject of this paper. Although the following struc-
ture analysis has not yet been applied in gamma-ray astronomy,
it is often used in integral geometry and in statistical physics
(Schneider & Weil 2008; Mecke 1998; Mecke & Stoyan 2000).

A gray-scale image, here the counts map, is turned into a
black-and-white (b/w) image (Mecke 1996). For each threshold
value ρ, all pixels with counts k ≥ ρ are set to black, the others
remain white – see Fig. 1. The structure of the image is then
analyzed as a function of the threshold ρ.

The structure of each b/w image is quantified by the
Minkowski functionals1. In two dimensions there are three of
them. They are proportional to well-known geometric quantities:
the area A of the black pixels, their perimeter P, and the Euler
characteristic χ, which is the integral of the Gaussian curvature.
It is a topological constant; for closed domains it is given by the
number of components minus the number of holes. Figure 1 vi-
sualizes how a counts map (a) is turned into a b/w image (b),
which is then quantified by Minkowski functionals (b)−(d). The

1 Other names are valuations, quermaßintegrals, intrinsic volumes, or
Hadwiger measures.

Table 1. Look-up table for Minkowski functionals.

Conf. A P χ Conf. A P χ

1 0 0 0 9 1/4 1 1/4
2 1/4 1 1/4 10 1/2 2 −1/2
3 1/4 1 1/4 11 1/2 1 0
4 1/2 1 0 12 3/4 1 −1/4
5 1/4 1 1/4 13 1/2 1 0
6 1/2 1 0 14 3/4 1 −1/4
7 1/2 2 −1/2 15 3/4 1 −1/4
8 3/4 1 −1/4 16 1 0 0

Notes. The functional values of area A, perimeter P, and Euler charac-
teristic χ are assigned to each 2 × 2 neighborhood of the image. The
unit of length is the edge-length of a pixel. Similar data can be found in
Mecke (1996) and Mantz et al. (2008).

area as a function of the threshold contains the knowledge about
the number of counts. However, it does not supply any informa-
tion about their arrangement, for which additional information is
provided by the perimeter and the Euler characteristic.

The Minkowski functionals are powerful shape measures.
Because of their additivity and continuity, they are robust against
noise and have short computation times. There are several linear
time algorithms for calculating the area, perimeter, and Euler
characteristic (e.g. Mantz et al. 2008; Schröder-Turk et al. 2010)
and for 3D data (e.g. Arns et al. 2010; Schröder-Turk et al.
2011, 2012). The straightforward algorithm used here is based
on Table 1. The image is decomposed into 2 × 2 neighborhoods.
The values of the Minkowski functionals are assigned to each
of the 16 possible configurations. Because of their additivity, the
sum of the local contributions yields their global value. The unit
of length is defined as the edge-length of a single pixel, thus
the area of a pixel is one. To avoid multiple countings when
iterating over the whole image, only that part may contribute
which is unique to a 2 × 2 neighborhood, i.e., each quarter of
the four pixels next to the center. For example, a single black
pixel has area and Euler characteristic one and perimeter four.
However, when iterating over the image, it will appear in four
different 2× 2 neighborhoods, namely configurations two, three,
five, and nine. Thus, Table 1 assigns to each of them area and
Euler characteristic one fourth and perimeter one. The white
pixel in configuration 15 can be interpreted as part of a hole;
it contributes negatively to the Euler characteristic. In configu-
rations seven and ten in Table 1 the black pixels sharing only
a vertex are chosen to be connected. If they were disconnected,
the weights for the Euler characteristic would be positive. The
choice is arbitrary, as long as the probability distribution for the
Euler characteristic is calculated consistently. However, connect-
ing them helps to distinguish a single cluster of black pixels from
two domains distant from each other2.

The choice of boundary conditions has a strong influence
on the structure quantification and its efficiency (Stoyan et al.
1987). Throughout this work, closed boundary conditions are
applied. This means all pixels outside the window of observa-
tion are set to white, thus all domains are closed. A discussion

2 If a marching square algorithm is used to find a more complex tri-
angulation of the domain of black pixels, the weights for area and
perimeter have to be adjusted – see Mantz et al. (2008). The proba-
bility distributions for the Minkowski functionals have to be calculated
consistently. However, no significant effect on the final results has yet
been observed.
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FIG. 1. Binary jet images of a dark jet (left) and a QCD
jet (right). Black dots are the active pixels in P 0 without
any filtering. Dark gray, gray, blue, and light blue pixels are
pixels in P (i)�P (i�1) for i = 1, 2, 3, 4, respectively (see text).
Both binary images have A(0) = 30. The dark jet has logits
of the RN output 7.5 and of CNN output 7.6. The QCD jet
has logits of the RN output -28.0 and of CNN output -39.0.

tify semi-visible jets originating from a toy dark sector
[28, 29]. The semi-visible jets have significantly di↵er-
ent MF distributions than QCD jets originating from the
quarks and gluons, and the MFs may take an important
role in the classification. We also test the model in top
jet tagging and find that the classification performance
is similar or better than a convolutional neural network
(CNN), with O(10) times less computational power and
memory consumption.

The morphological analysis on jet constituents is per-
formed on the filtered distribution of jet constituents pro-
jected on (⌘, �) plane. To analyze soft and hard jet con-
stituents separately, the jet constituents with pT below
a threshold are filtered out [20, 27]. For the analysis
of pixellated jet images, we use the following pT thresh-
olds: default threshold of the detector simulation1, 2,
4, and 8 GeV. The resulting binary images on a two-
dimensional integer grid2 are used for the morphological
analysis. Sample binary images are in Fig. 1.

To understand the morphology of the binary images,
we analyze the MFs of the images after some dilation
by a square. The dilation is useful for probing geometric
features that is visible at a angular resolution of the char-
acteristic length scale of the structuring element. For the
pixellated image analysis, we may use a square with side
length 2k+1 as a structuring element of the dilation and
consider the resulting image as P (k),

P (k) = {a + b | a 2 P (0), b 2 B(k)}, (1)

B(k) = {(i, j) | i, j 2 {�k, �k + 1, ...k � 1, k}} (2)

1 0.5 GeV for the electronic calorimeters and 1.0 GeV for the
hadronic calorimeters. This filtering is performed before the
pixellation.

2 The physical unit length of the grid is the hadronic calorimeter
resolution 0.1.

where P (0) is the set of integer coordinates of the selected
pixels of the original binary image. Note that multiplying
the angular resolution �R = 0.1 to the integer coordi-
nates gives us the physical pseudorapidity-polar coordi-
nates (⌘, �). For the analysis in two dimension, there are
three Minkowski functionals (MFs): area (A), perimeter
(L), and Euler characteristic (�) of the image after the
dilation. We denote the three MFs of P (k) as A(k), L(k),
and �(k).

The Hadwiger’s theorem also implies that the elements
of the sequences A(k), L(k), and �(k) satisfies a recurrence
relation when there is no changes in shape and topology
by dialation.

A(k+1) = A(k) + L(k) + 4�(k),

L(k+1) = L(k) + 8�(k), �(k+1) = �(k) (3)

The deviation from this relation can be understood that
some change has been made at the given angular scale.
Therefore, the analysis on these sequences of MFs can be
considered as a persistent analysis on geometric features
of jet substructures, similar to [30]. These sequences are
also useful as inputs to a neural network for analyzing
the geometric features since typical neural networks start
from a linear combination of the inputs.

Although those MFs are global features of a binary im-
age, they can be written as a sum of local contributions
from 2 ⇥ 2 subimages. Since there are only 16 configura-
tions for the 2⇥2 subimages, we may use a look-up table
v for parameterizing the local contribution [31].

(A(k), L(k), �(k)) =
X

i,j

X

n,m2{0,1}

v
⇣
P (k)

(i+n)(j+m)fnm
⌘

(4)

where fnm = ((1, 2), (4, 8)), and P (k)
ij is 1 or 0 if (i, j)-th

pixel of P (k) is active or not active, respectively.
This algorithms are for square integer lattices, but we

may use hexagonal pixels or marching square algorithms
[32] for approximating MFs without pixellations.

Equation 4 indicates that the MFs can be approxi-
mated by a deep convolutional neural network (CNN).
This is fully discribed in the Appendix. Note that Eq. 4
essentially consists of two components: 2⇥2 convolution
between P (k) and f , and a scalar function v. The stacked
convolutional layers can model this , i.e., the weights of
the first convolutional layer is f and later layers can be
considered as a multilayer perceptron (MLP) that models
v. The filtering by pT is also a local operation that can
be approximated by a CNN. Dilation can be written in
a step function of convolution between the P (0) and the

structuring element B, i.e, P (k)
ij = ✓(P (0)

(i+n)(j+n)Bnm).

Therefore, A(k), L(k), and �(k) are covered by a CNN
trained on jet images. But this expression contains a
step function, which have a point of discontinuity. In
the asymptotic limit of the CNN, this does not mat-
ter much thanks to the universal approximation theorem

2

FIG. 1. Binary jet images of a dark jet (left) and a QCD
jet (right). Black dots are the active pixels in P 0 without
any filtering. Dark gray, gray, blue, and light blue pixels are
pixels in P (i)�P (i�1) for i = 1, 2, 3, 4, respectively (see text).
Both binary images have A(0) = 30. The dark jet has logits
of the RN output 7.5 and of CNN output 7.6. The QCD jet
has logits of the RN output -28.0 and of CNN output -39.0.

tify semi-visible jets originating from a toy dark sector
[28, 29]. The semi-visible jets have significantly di↵er-
ent MF distributions than QCD jets originating from the
quarks and gluons, and the MFs may take an important
role in the classification. We also test the model in top
jet tagging and find that the classification performance
is similar or better than a convolutional neural network
(CNN), with O(10) times less computational power and
memory consumption.

The morphological analysis on jet constituents is per-
formed on the filtered distribution of jet constituents pro-
jected on (⌘, �) plane. To analyze soft and hard jet con-
stituents separately, the jet constituents with pT below
a threshold are filtered out [20, 27]. For the analysis
of pixellated jet images, we use the following pT thresh-
olds: default threshold of the detector simulation1, 2,
4, and 8 GeV. The resulting binary images on a two-
dimensional integer grid2 are used for the morphological
analysis. Sample binary images are in Fig. 1.

To understand the morphology of the binary images,
we analyze the MFs of the images after some dilation
by a square. The dilation is useful for probing geometric
features that is visible at a angular resolution of the char-
acteristic length scale of the structuring element. For the
pixellated image analysis, we may use a square with side
length 2k+1 as a structuring element of the dilation and
consider the resulting image as P (k),

P (k) = {a + b | a 2 P (0), b 2 B(k)}, (1)

B(k) = {(i, j) | i, j 2 {�k, �k + 1, ...k � 1, k}} (2)

1 0.5 GeV for the electronic calorimeters and 1.0 GeV for the
hadronic calorimeters. This filtering is performed before the
pixellation.

2 The physical unit length of the grid is the hadronic calorimeter
resolution 0.1.

where P (0) is the set of integer coordinates of the selected
pixels of the original binary image. Note that multiplying
the angular resolution �R = 0.1 to the integer coordi-
nates gives us the physical pseudorapidity-polar coordi-
nates (⌘, �). For the analysis in two dimension, there are
three Minkowski functionals (MFs): area (A), perimeter
(L), and Euler characteristic (�) of the image after the
dilation. We denote the three MFs of P (k) as A(k), L(k),
and �(k).

The Hadwiger’s theorem also implies that the elements
of the sequences A(k), L(k), and �(k) satisfies a recurrence
relation when there is no changes in shape and topology
by dialation.

A(k+1) = A(k) + L(k) + 4�(k),

L(k+1) = L(k) + 8�(k), �(k+1) = �(k) (3)

The deviation from this relation can be understood that
some change has been made at the given angular scale.
Therefore, the analysis on these sequences of MFs can be
considered as a persistent analysis on geometric features
of jet substructures, similar to [30]. These sequences are
also useful as inputs to a neural network for analyzing
the geometric features since typical neural networks start
from a linear combination of the inputs.

Although those MFs are global features of a binary im-
age, they can be written as a sum of local contributions
from 2 ⇥ 2 subimages. Since there are only 16 configura-
tions for the 2⇥2 subimages, we may use a look-up table
v for parameterizing the local contribution [31].

(A(k), L(k), �(k)) =
X
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n,m2{0,1}
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⇣
P (k)

(i+n)(j+m)fnm
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(4)

where fnm = ((1, 2), (4, 8)), and P (k)
ij is 1 or 0 if (i, j)-th

pixel of P (k) is active or not active, respectively.
This algorithms are for square integer lattices, but we

may use hexagonal pixels or marching square algorithms
[32] for approximating MFs without pixellations.

Equation 4 indicates that the MFs can be approxi-
mated by a deep convolutional neural network (CNN).
This is fully discribed in the Appendix. Note that Eq. 4
essentially consists of two components: 2⇥2 convolution
between P (k) and f , and a scalar function v. The stacked
convolutional layers can model this , i.e., the weights of
the first convolutional layer is f and later layers can be
considered as a multilayer perceptron (MLP) that models
v. The filtering by pT is also a local operation that can
be approximated by a CNN. Dilation can be written in
a step function of convolution between the P (0) and the

structuring element B, i.e, P (k)
ij = ✓(P (0)

(i+n)(j+n)Bnm).

Therefore, A(k), L(k), and �(k) are covered by a CNN
trained on jet images. But this expression contains a
step function, which have a point of discontinuity. In
the asymptotic limit of the CNN, this does not mat-
ter much thanks to the universal approximation theorem



DARK JET の場合

• Dark Jet 　pp →Z’ → qD qD→ dark Parton 
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• カラーシングレットなシャワー:粒子がたく
さんあるが、いくつかのカラーシングレット
なクラスターになっている状態

 
12 / 15 

Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plotsLim, Nojiri   in preparation

mρ=20GeV

ダーク 
セクター  

（ダーククオーク
とダークQCD) 



 CNN は何を訓練しているか

CNN  allowing 10% rejection of signal 

Original distribution 

 
12 / 15 

Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

Smaller MF endpoint suggests 
Compact soft activities 

0 50 100 150 200 250 300 350 400 450

Minkowski Sequence

0

P
D

F

pT,J 2 [150, 300] GeV mJ 2 [30, 70] GeV

DJ(0)

QCD(0)

DJ(1)

QCD(1)

DJ(3)

QCD(3)

DJ(5)

QCD(5)

0 50 100 150 200 250 300 350 400 450

Minkowski Sequence(after CNN cut)

0

P
D

F

pT,J 2 [150, 300] GeV mJ 2 [30, 70] GeV

DJ(1)

QCD(1)

DJ(3)

QCD(3)

DJ(5)

QCD(5)

Cut using CNN  

Dark jet と QCD ジェットを判別させる



RELATION NETWORK+ MF

MLP

ミンコフスキー
汎関数

ジェットの運動量などの 
大域的な量　U

IRC SAFE な 

2点関数 
LEADING SUBJET  

を除いた 
2点関数

MLP MLP

MLP 

3

[33]. However, CNN with finite number of filters and
smooth activation functions may have di�culty on ac-
cessing this variable set. Similar situation may happen
in the CNN with L2 regularizers. We will show such
example later.

The equation Eq. 4 also shows that the MFs are in-
dependent to the other IRC safe energy-dependent ob-

servable. The energy dependent part of Eq. 4, P (k)
ij , is

essentially a step function of the pT of jet constituents. In
order to be a IRC safe observable, the energy dependent
part should be linear [15]. Therefore, the MFs systemat-
ically provides new information to the IRC safe observ-
able.

In this regard, a relation network (RN) with IRC safe
constraints [20] is a good complementary deep learning
framework to the MFs. The RN is based on two-point
energy correlation S2,ab that accumulates energy correla-
tions at a given angular scale R.

S2,ab(R) =
X

i2a,j2b

pT,ipT,j�(R � Rij), (5)

where i and j are the jet constituents in a subset of jet
constituents, a and b, respectively. Rij is the distance
between i and j on the (⌘, �) plane. The RN takes a dis-

cretized S(k)
2,ab =

R 0.1(k+1)
0.1k dR S2,ab(R) as an input, where

0.1 is again the hadronic calorimeter resolution. The in-

ner products between S(k)
2,ab and the weights in the first

fully-connected layer can be regarded as trainable two-
point energy correlation. For example, two-point energy
correlation functions [14, 16] can be written in terms of
a linear combination of the S2.

The subjet indices a and b are hyperparmeters of this
architecture, and we use the following subjets which are
useful in top tagging [20]: 1) the jet itself J, 2) the
trimmed jet Jtrim, 3) the counterpart of the trimmed jet
J/Jtrim, 4) the leading subjet J1, 5) the counterpart of
the leading subjet J/J1. To set the characteristic scales
of the given jet, the RN also takes six kinematical pa-
rameters of those subjets: the transverse momentum and
mass of J, Jtrim, and J1.

The combined architecture systematically aggregates
the initial local features, while CNN needs to find good
local features during the training. Note that the aggre-
gated features typically have less fluctuation. For ex-
ample, the number of active pixels A(0) has fluctuation
�A(0)/A(0) ⇠ 1/

p
A(0) but each pixel-by-pixel fluctuation

is order 1. As a result, the training of CNN is potentially
more prone to the fluctuation of the energy deposit of
pixels. We will show an example that the classifier us-
ing MFs sometimes beat CNN in performance because it
e�ciently encodes jet features.

First, we consider a toy model whose signature a semi-
visible jet [28, 29] from a Hidden valley scenario [34, 35].
The hidden sector may include a fermion qv charged un-
der the secluded gauge group and a leptophobic mas-

FIG. 2. Left: distributions of MFs A(0) (light color), A(1)

(solid), A(3) (dashed) and A(5) (dotted) of dark jet (red) and
QCD jet (blue) of the selected leading jets with 150 GeV
< pT,J < 300 GeV and 30 GeV < mJ < 70 GeV. Right: The
distribution of MS after rejecting 10% signal events by CNN
classifier (ReLU). Roughly 1.5% of QCD events remains after
the cut.

sive gauge boson Z 0 that mediates the interaction be-
tween the SM particles and the hidden sector. At the
hadron collider, qv may be produced through the process
qq̄ ! Z 0 ! qv q̄v. The secluded gauge group contains
an interaction that confines qv and q̄v, and forms pions
⇡v and rho mesons ⇢v of the hidden sector. The decay
modes of the mesons depend on the realization of the
hidden sector, and we consider a scenario that only ⇢v
leave a visible signatures via the decay ⇢v ! qq̄ while
the other mesons are not visible at the collider. The re-
sulting semi-visible jet, which we call a dark jet, contains
many color-singlet quark pairs and missing particles that
appear after the parton shower and hadronization in the
secluded sector. Therefore, the dark jets are drastically
di↵erent from the ordinary QCD jets, both in hard sub-
structure and in color structures.

For the simulation of the dark jet, we use Pythia 8 [36]
and its hidden valley model implementation [35]. The
mass spectrum is assigned as follows: mZ0 = 1400 GeV,
mqv = 10GeV, and m⇡v = m⇢v = 20GeV. The fraction
of ⇡v and ⇢v during the hadronization is set to be 1:3 as
the spin counting suggests. The pT of the qv is typically
700 GeV, but the selected jets have smaller pT because
⇡v take away some of the momentum fraction. The QCD
jet samples are the leading pT jets of the process pp ! 2j
is generated using MadGraph5 2.6.6 [37] together with
Pythia 8. Detector e↵ect is modeled by Delphes 3.4.1
[38] with the default ATLAS detector card.

Figure 2 (left) shows the A(k) distributions of dark jets
and QCD jets. While the A(0) distributions are similar,
the distributions of A(i) (i > 0) are very di↵erent. The
average of A(i) of the QCD jets is much larger, and the
A(i) distribution extends far beyond the endpoint of the
A(i) distribution of the dark jets. In order to check that
our CNN learned this exclusive phase space of the QCD
jets, we check the A(i) distribution after rejecting of 10%
of the dark jets using our CNN. The distributions are
shown in Fig. 2 (right), and those of the QCD jets does
not have samples beyond the endpoints. This behavior
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Figure 3: The S2 and S2,trim distributions of the top jets and the QCD jet in figure 2. The dashed
lines are the characteristic angular scales of the top jets in the parton level.

Here, b is a bottom quark from a top quark decay, and q and q̄ are quarks from the subsequent W

boson decay. Figure 3(a) is the S2,trim of the top jet that has those four peaks clearly. This pattern
is relatively rare for QCD jets. Figure 3(c) is the S2,trim of a typical QCD jet.

In the case where the characteristic angular scales of the top quark, Rbq, Rbq̄, and Rqq̄, are
close to each other, it is not possible to see all peak structures in the S2,trim(R) distributions.
Such an example is shown in figure 3(b), although the relative strength of the peaks in the S2,trim

distribution contains partial information of the three-prong structures.2

The information of the three-prong substructure is more clearly encoded in S2,11, S2,1c, and
S2,cc. The two-point correlations of the top jets corresponding to figure 2(a) and figure 2(b) are
shown in figure 4 and figure 5, respectively. This decomposition of a given jet into J1 and J \ J1

factorizes the identification of a three-prong structure into that of two-prong substructures and its
relative position from the J1. Those S2,ab in parton level are as follows,

S2,11(R) = p
2

T,i1�(R), (2.17)

2 S2,1c(R) = 2pT,i1pT,i2�(R � Ri1i2) + 2pT,i1pT,i3�(R � Ri1i3), (2.18)

S2,cc(R) = (p2

T,i2 + p
2

T,i3)�(R) + 2pT,i2pT,i3�(R � Ri2i3), (2.19)

where ik is the k-th leading pT parton. Figure 4 shows that the two peaks are in S2,1c and the
other two peaks are in S2,cc. Figure 5 is the case where values of Rbq and Rbq̄ are similar. The S2,cc

distribution has a peak at R ⇡ 0.6, and the peak intensity is comparable to that of the peak at
R = 0 because the J \J1 has a two-prong substructure. In addition, the S2,1c distribution suggests
that the high pT constituents of J\J1 are away from J1 by a distance of 0.5. Note that the analysis
on S2,1c is essentially telescoping jets [147, 148] with respect to J1.

3 Morphological Analysis of Soft Emissions

The number of particles of top jets and QCD jets is significantly di↵erent. For the boosted top quark
decaying hadronically, i.e., t ! bW ! bqq̄

0, the significant fraction of energy goes to color singlet W

boson. The number of particles in a top jet is less than that of a gluon jet with the same jet mass

2
For example, if all the partons from three-prong decay carry an equal fraction of momenta and their angular

distances are the same, the ratio between the intensity of the two peaks is 1:2 in the parton level, while it is 1:1 for

a two-prong decay [19].
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

IRC safe でない情報は、 
ここだけからくる
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FIG. 3. ROC curves of various classification models for
(left) dark jets vs. QCD jets, (right) top jets vs. QCD jets.
The legend explains the network types and its inputs of the
corresponding curve.

shows that the MFs have a key role in the classifier model
using the CNN. Therefore, a neural network explicitly
using the MFs can be an e�cient jet classifier compared
with more generic models, without losing much perfor-
mance.

The receiver operator characteristic (ROC) curves of
RN and CNN with and without the MFs are illustrated
on the left side of Fig. 3. All the RN and CNN rejects
more than 90% QCD jets without losing any dark jets
because many QCD jets are on the exclusive region of
the A(k) as illustrated in Fig. 2. However, only using the
sequences of MFs for the classification is not su�cient
for the best tagging performance, so that adding the IRC
safe information clearly improves the performance. One
interesting behavior of the RN with all the MFs is that
its performance is better than that of the CNN in most
of the regions although all the RN inputs are derived
from the jet images [20]. The area under the ROC curve
(AUC) of the RN with MFs is 0.99529 while that of the
CNN is 0.99502. The mistag rate of QCD jets at dark
jet tagging e�ciency 60% is 3.02% and 3.61% for the
RN with MFs and the CNN, respectively. Moreover, the
performance of the CNN is improved after adding MFs
as inputs, and this may indicates that the MFs may not
be fully covered during the training although the MFs
has a representation with convolutions.

We show the ROC curves for the top jet vs. QCD
jet classification on the right side of Fig. 3 The sam-
ples are identical to that of the previous work [20]. One
major change from the previous setup is that all the ac-
tivation functions are replaced from ELU to ReLU. In
the previous paper, we considered the RN with A0 and
A1 and claimed that it has comparable performance to
CNN. The ELU activation was mainly for stabilizing the
training and reducing overfitting to the training samples
since the smoothness of the ELU helps reduce overfit-
ting. However, if the MFs may take an important role in
the classification, we need a non-smooth activation func-

tion. The CNN’s performance is increased significantly
by the change, but the RN with more MFs still performs
equivalently or better than CNN.

The performance enhancement of networks using the
MFs compared with CNN’s performance may be due to
overfitting and regularization. In gradient-based training
methods, easily classifiable samples dominate the early
phase of training. As a result, the CNN may be overfitted
to find out those easy classification boundaries, and the
training of CNN on the confusing region may be under-
represented. Furthermore, the convolutional represen-
tation of the MFs includes discontinuous step function,
which requires large weights to be modeled by ReLU.
However, such weights are penalized by L2 regularizers.
The CNN may have di�culty in accessing those MFs dur-
ing the training and fall into a local minimum that does
not fully utilize the MFs.

The classification performance of the RN and CNN are
similar, but RN is computationally much cheap. Since
the RN does not evaluate the convolution and the other
accumulations during the training, the training of the
RN is much faster than that of the CNN. One epoch of
training with a batch number 200 takes about 4 seconds
for the RN, and 30 seconds for the CNN. The RN also
takes about 10 times less GPU memory than the CNN
so that RN is computationally e�cient compared to the
CNN, without losing performance much.

In summary, we have introduced a morphological anal-
ysis with Minkowski functionals (MFs) for quantifying
geometric features of jet substructures. For the best per-
formance in jet tagging, this analysis can be combined
with a relation network (RN) based on trainable IRC safe
energy correlation functions. The MFs can be written in
terms of convolutions so that the RN with the MFs can
be understood as a network with predefined convolutions
and local feature aggregation. Since this architecture is
more constrained than the convolutional neural network
(CNN), it is computationally e�cient, and training is
more stable. Moreover, the RN has comparable classi-
fication performance to the CNN but less susceptible to
overfitting, as shown in tagging the dark jets of a toy
model motivated by a Hidden Valley scenario.

Conversely, the MFs have the potential of being an
explaining variable for the CNN. If we could extend this
morphological analysis to cover the CNN, we could use it
as a model-agnostic interpretability module. Since all the
MFs have geometric interpretations, we may achieve sig-
nificant controllability than the parameterization of the
CNN. The classifier using RN and MFs may be much eas-
ier to calibrate than the one using jet images. We only
need to calibrate the aggregated features, including MFs,
rather than individual energy deposits. A comparison
between the classifiers trained on the dataset generated
by di↵erent simulators [20] suggests that event reweight-
ing reduces systematical errors [39]. The RN with MFs is
also not limited to tagging the semi-visible dark jets, and

DARK JET VS QCD 

MF only   reject lots of QCD jet 

MF+IRC 安全な２点関数 CNN 

活性化関数によらない。 

CNN(ReLU) 
ELU にするとすごく悪い 
急な変化をする活性化関数
を必要としている。  

Bottleneck 必要

Jet PT 150~300GeV  Jet mass 30~ 70GeV

RN + MF also improve Top vs QCD (but improvement is smaller ) 
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shows that the MFs have a key role in the classifier model
using the CNN. Therefore, a neural network explicitly
using the MFs can be an e�cient jet classifier compared
with more generic models, without losing much perfor-
mance.

The receiver operator characteristic (ROC) curves of
RN and CNN with and without the MFs are illustrated
on the left side of Fig. 3. All the RN and CNN rejects
more than 90% QCD jets without losing any dark jets
because many QCD jets are on the exclusive region of
the A(k) as illustrated in Fig. 2. However, only using the
sequences of MFs for the classification is not su�cient
for the best tagging performance, so that adding the IRC
safe information clearly improves the performance. One
interesting behavior of the RN with all the MFs is that
its performance is better than that of the CNN in most
of the regions although all the RN inputs are derived
from the jet images [20]. The area under the ROC curve
(AUC) of the RN with MFs is 0.99529 while that of the
CNN is 0.99502. The mistag rate of QCD jets at dark
jet tagging e�ciency 60% is 3.02% and 3.61% for the
RN with MFs and the CNN, respectively. Moreover, the
performance of the CNN is improved after adding MFs
as inputs, and this may indicates that the MFs may not
be fully covered during the training although the MFs
has a representation with convolutions.

We show the ROC curves for the top jet vs. QCD
jet classification on the right side of Fig. 3 The sam-
ples are identical to that of the previous work [20]. One
major change from the previous setup is that all the ac-
tivation functions are replaced from ELU to ReLU. In
the previous paper, we considered the RN with A0 and
A1 and claimed that it has comparable performance to
CNN. The ELU activation was mainly for stabilizing the
training and reducing overfitting to the training samples
since the smoothness of the ELU helps reduce overfit-
ting. However, if the MFs may take an important role in
the classification, we need a non-smooth activation func-

tion. The CNN’s performance is increased significantly
by the change, but the RN with more MFs still performs
equivalently or better than CNN.

The performance enhancement of networks using the
MFs compared with CNN’s performance may be due to
overfitting and regularization. In gradient-based training
methods, easily classifiable samples dominate the early
phase of training. As a result, the CNN may be overfitted
to find out those easy classification boundaries, and the
training of CNN on the confusing region may be under-
represented. Furthermore, the convolutional represen-
tation of the MFs includes discontinuous step function,
which requires large weights to be modeled by ReLU.
However, such weights are penalized by L2 regularizers.
The CNN may have di�culty in accessing those MFs dur-
ing the training and fall into a local minimum that does
not fully utilize the MFs.

The classification performance of the RN and CNN are
similar, but RN is computationally much cheap. Since
the RN does not evaluate the convolution and the other
accumulations during the training, the training of the
RN is much faster than that of the CNN. One epoch of
training with a batch number 200 takes about 4 seconds
for the RN, and 30 seconds for the CNN. The RN also
takes about 10 times less GPU memory than the CNN
so that RN is computationally e�cient compared to the
CNN, without losing performance much.

In summary, we have introduced a morphological anal-
ysis with Minkowski functionals (MFs) for quantifying
geometric features of jet substructures. For the best per-
formance in jet tagging, this analysis can be combined
with a relation network (RN) based on trainable IRC safe
energy correlation functions. The MFs can be written in
terms of convolutions so that the RN with the MFs can
be understood as a network with predefined convolutions
and local feature aggregation. Since this architecture is
more constrained than the convolutional neural network
(CNN), it is computationally e�cient, and training is
more stable. Moreover, the RN has comparable classi-
fication performance to the CNN but less susceptible to
overfitting, as shown in tagging the dark jets of a toy
model motivated by a Hidden Valley scenario.

Conversely, the MFs have the potential of being an
explaining variable for the CNN. If we could extend this
morphological analysis to cover the CNN, we could use it
as a model-agnostic interpretability module. Since all the
MFs have geometric interpretations, we may achieve sig-
nificant controllability than the parameterization of the
CNN. The classifier using RN and MFs may be much eas-
ier to calibrate than the one using jet images. We only
need to calibrate the aggregated features, including MFs,
rather than individual energy deposits. A comparison
between the classifiers trained on the dataset generated
by di↵erent simulators [20] suggests that event reweight-
ing reduces systematical errors [39]. The RN with MFs is
also not limited to tagging the semi-visible dark jets, and

Top jet の場合 やっぱり　RN+ MF がよい



ミンコフスキー汎関数とCNN の関係
• ミンコフスキー汎関数(MF) は　CNN のフィルターの形で書くこと
ができる
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Fig. 1. Structure quantification via Minkowski functionals. a) Counts
map, simulated Poisson-distributed random number of counts k. To
characterize the morphology, the image is turned into a black-and-white
image via thresholding – see b); the three Minkowski functionals are
then evaluated for the b/w image. b) Area A. c) Perimeter P. d) Euler
characteristic χ.

is explained in Sect. 3.1 using a global null hypothesis. The
technique is extended in Sect. 3.2 to local structure deviations
found with Minkowski sky maps, which allows one to resolve
and localize the gamma-ray sources. Section 3.3 applies the
analysis to simulated data. Finally, the results for counts maps
observed with H.E.S.S. are given in Sect. 4.

2. Structure characterization

This section describes the structure characterization of a
gamma-ray counts map. While similar methods may be used to
quantify the morphology of extended gamma-ray sources, this
is not the subject of this paper. Although the following struc-
ture analysis has not yet been applied in gamma-ray astronomy,
it is often used in integral geometry and in statistical physics
(Schneider & Weil 2008; Mecke 1998; Mecke & Stoyan 2000).

A gray-scale image, here the counts map, is turned into a
black-and-white (b/w) image (Mecke 1996). For each threshold
value ρ, all pixels with counts k ≥ ρ are set to black, the others
remain white – see Fig. 1. The structure of the image is then
analyzed as a function of the threshold ρ.

The structure of each b/w image is quantified by the
Minkowski functionals1. In two dimensions there are three of
them. They are proportional to well-known geometric quantities:
the area A of the black pixels, their perimeter P, and the Euler
characteristic χ, which is the integral of the Gaussian curvature.
It is a topological constant; for closed domains it is given by the
number of components minus the number of holes. Figure 1 vi-
sualizes how a counts map (a) is turned into a b/w image (b),
which is then quantified by Minkowski functionals (b)−(d). The

1 Other names are valuations, quermaßintegrals, intrinsic volumes, or
Hadwiger measures.

Table 1. Look-up table for Minkowski functionals.

Conf. A P χ Conf. A P χ

1 0 0 0 9 1/4 1 1/4
2 1/4 1 1/4 10 1/2 2 −1/2
3 1/4 1 1/4 11 1/2 1 0
4 1/2 1 0 12 3/4 1 −1/4
5 1/4 1 1/4 13 1/2 1 0
6 1/2 1 0 14 3/4 1 −1/4
7 1/2 2 −1/2 15 3/4 1 −1/4
8 3/4 1 −1/4 16 1 0 0

Notes. The functional values of area A, perimeter P, and Euler charac-
teristic χ are assigned to each 2 × 2 neighborhood of the image. The
unit of length is the edge-length of a pixel. Similar data can be found in
Mecke (1996) and Mantz et al. (2008).

area as a function of the threshold contains the knowledge about
the number of counts. However, it does not supply any informa-
tion about their arrangement, for which additional information is
provided by the perimeter and the Euler characteristic.

The Minkowski functionals are powerful shape measures.
Because of their additivity and continuity, they are robust against
noise and have short computation times. There are several linear
time algorithms for calculating the area, perimeter, and Euler
characteristic (e.g. Mantz et al. 2008; Schröder-Turk et al. 2010)
and for 3D data (e.g. Arns et al. 2010; Schröder-Turk et al.
2011, 2012). The straightforward algorithm used here is based
on Table 1. The image is decomposed into 2 × 2 neighborhoods.
The values of the Minkowski functionals are assigned to each
of the 16 possible configurations. Because of their additivity, the
sum of the local contributions yields their global value. The unit
of length is defined as the edge-length of a single pixel, thus
the area of a pixel is one. To avoid multiple countings when
iterating over the whole image, only that part may contribute
which is unique to a 2 × 2 neighborhood, i.e., each quarter of
the four pixels next to the center. For example, a single black
pixel has area and Euler characteristic one and perimeter four.
However, when iterating over the image, it will appear in four
different 2× 2 neighborhoods, namely configurations two, three,
five, and nine. Thus, Table 1 assigns to each of them area and
Euler characteristic one fourth and perimeter one. The white
pixel in configuration 15 can be interpreted as part of a hole;
it contributes negatively to the Euler characteristic. In configu-
rations seven and ten in Table 1 the black pixels sharing only
a vertex are chosen to be connected. If they were disconnected,
the weights for the Euler characteristic would be positive. The
choice is arbitrary, as long as the probability distribution for the
Euler characteristic is calculated consistently. However, connect-
ing them helps to distinguish a single cluster of black pixels from
two domains distant from each other2.

The choice of boundary conditions has a strong influence
on the structure quantification and its efficiency (Stoyan et al.
1987). Throughout this work, closed boundary conditions are
applied. This means all pixels outside the window of observa-
tion are set to white, thus all domains are closed. A discussion

2 If a marching square algorithm is used to find a more complex tri-
angulation of the domain of black pixels, the weights for area and
perimeter have to be adjusted – see Mantz et al. (2008). The proba-
bility distributions for the Minkowski functionals have to be calculated
consistently. However, no significant effect on the final results has yet
been observed.
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FIG. 1. Binary jet images of a dark jet (left) and a QCD
jet (right). Black dots are the active pixels in P 0 without
any filtering. Dark gray, gray, blue, and light blue pixels are
pixels in P (i)�P (i�1) for i = 1, 2, 3, 4, respectively (see text).
Both binary images have A(0) = 30. The dark jet has logits
of the RN output 7.5 and of CNN output 7.6. The QCD jet
has logits of the RN output -28.0 and of CNN output -39.0.

tify semi-visible jets originating from a toy dark sector
[28, 29]. The semi-visible jets have significantly di↵er-
ent MF distributions than QCD jets originating from the
quarks and gluons, and the MFs may take an important
role in the classification. We also test the model in top
jet tagging and find that the classification performance
is similar or better than a convolutional neural network
(CNN), with O(10) times less computational power and
memory consumption.

The morphological analysis on jet constituents is per-
formed on the filtered distribution of jet constituents pro-
jected on (⌘, �) plane. To analyze soft and hard jet con-
stituents separately, the jet constituents with pT below
a threshold are filtered out [20, 27]. For the analysis
of pixellated jet images, we use the following pT thresh-
olds: default threshold of the detector simulation1, 2,
4, and 8 GeV. The resulting binary images on a two-
dimensional integer grid2 are used for the morphological
analysis. Sample binary images are in Fig. 1.

To understand the morphology of the binary images,
we analyze the MFs of the images after some dilation
by a square. The dilation is useful for probing geometric
features that is visible at a angular resolution of the char-
acteristic length scale of the structuring element. For the
pixellated image analysis, we may use a square with side
length 2k+1 as a structuring element of the dilation and
consider the resulting image as P (k),

P (k) = {a + b | a 2 P (0), b 2 B(k)}, (1)

B(k) = {(i, j) | i, j 2 {�k, �k + 1, ...k � 1, k}} (2)

1 0.5 GeV for the electronic calorimeters and 1.0 GeV for the
hadronic calorimeters. This filtering is performed before the
pixellation.

2 The physical unit length of the grid is the hadronic calorimeter
resolution 0.1.

where P (0) is the set of integer coordinates of the selected
pixels of the original binary image. Note that multiplying
the angular resolution �R = 0.1 to the integer coordi-
nates gives us the physical pseudorapidity-polar coordi-
nates (⌘, �). For the analysis in two dimension, there are
three Minkowski functionals (MFs): area (A), perimeter
(L), and Euler characteristic (�) of the image after the
dilation. We denote the three MFs of P (k) as A(k), L(k),
and �(k).

The Hadwiger’s theorem also implies that the elements
of the sequences A(k), L(k), and �(k) satisfies a recurrence
relation when there is no changes in shape and topology
by dialation.

A(k+1) = A(k) + L(k) + 4�(k),

L(k+1) = L(k) + 8�(k), �(k+1) = �(k) (3)

The deviation from this relation can be understood that
some change has been made at the given angular scale.
Therefore, the analysis on these sequences of MFs can be
considered as a persistent analysis on geometric features
of jet substructures, similar to [30]. These sequences are
also useful as inputs to a neural network for analyzing
the geometric features since typical neural networks start
from a linear combination of the inputs.

Although those MFs are global features of a binary im-
age, they can be written as a sum of local contributions
from 2 ⇥ 2 subimages. Since there are only 16 configura-
tions for the 2⇥2 subimages, we may use a look-up table
v for parameterizing the local contribution [31].

(A(k), L(k), �(k)) =
X

i,j

X

n,m2{0,1}

v
⇣
P (k)

(i+n)(j+m)fnm
⌘

(4)

where fnm = ((1, 2), (4, 8)), and P (k)
ij is 1 or 0 if (i, j)-th

pixel of P (k) is active or not active, respectively.
This algorithms are for square integer lattices, but we

may use hexagonal pixels or marching square algorithms
[32] for approximating MFs without pixellations.

Equation 4 indicates that the MFs can be approxi-
mated by a deep convolutional neural network (CNN).
This is fully discribed in the Appendix. Note that Eq. 4
essentially consists of two components: 2⇥2 convolution
between P (k) and f , and a scalar function v. The stacked
convolutional layers can model this , i.e., the weights of
the first convolutional layer is f and later layers can be
considered as a multilayer perceptron (MLP) that models
v. The filtering by pT is also a local operation that can
be approximated by a CNN. Dilation can be written in
a step function of convolution between the P (0) and the

structuring element B, i.e, P (k)
ij = ✓(P (0)

(i+n)(j+n)Bnm).

Therefore, A(k), L(k), and �(k) are covered by a CNN
trained on jet images. But this expression contains a
step function, which have a point of discontinuity. In
the asymptotic limit of the CNN, this does not mat-
ter much thanks to the universal approximation theorem

2

FIG. 1. Binary jet images of a dark jet (left) and a QCD
jet (right). Black dots are the active pixels in P 0 without
any filtering. Dark gray, gray, blue, and light blue pixels are
pixels in P (i)�P (i�1) for i = 1, 2, 3, 4, respectively (see text).
Both binary images have A(0) = 30. The dark jet has logits
of the RN output 7.5 and of CNN output 7.6. The QCD jet
has logits of the RN output -28.0 and of CNN output -39.0.

tify semi-visible jets originating from a toy dark sector
[28, 29]. The semi-visible jets have significantly di↵er-
ent MF distributions than QCD jets originating from the
quarks and gluons, and the MFs may take an important
role in the classification. We also test the model in top
jet tagging and find that the classification performance
is similar or better than a convolutional neural network
(CNN), with O(10) times less computational power and
memory consumption.

The morphological analysis on jet constituents is per-
formed on the filtered distribution of jet constituents pro-
jected on (⌘, �) plane. To analyze soft and hard jet con-
stituents separately, the jet constituents with pT below
a threshold are filtered out [20, 27]. For the analysis
of pixellated jet images, we use the following pT thresh-
olds: default threshold of the detector simulation1, 2,
4, and 8 GeV. The resulting binary images on a two-
dimensional integer grid2 are used for the morphological
analysis. Sample binary images are in Fig. 1.

To understand the morphology of the binary images,
we analyze the MFs of the images after some dilation
by a square. The dilation is useful for probing geometric
features that is visible at a angular resolution of the char-
acteristic length scale of the structuring element. For the
pixellated image analysis, we may use a square with side
length 2k+1 as a structuring element of the dilation and
consider the resulting image as P (k),

P (k) = {a + b | a 2 P (0), b 2 B(k)}, (1)

B(k) = {(i, j) | i, j 2 {�k, �k + 1, ...k � 1, k}} (2)

1 0.5 GeV for the electronic calorimeters and 1.0 GeV for the
hadronic calorimeters. This filtering is performed before the
pixellation.

2 The physical unit length of the grid is the hadronic calorimeter
resolution 0.1.

where P (0) is the set of integer coordinates of the selected
pixels of the original binary image. Note that multiplying
the angular resolution �R = 0.1 to the integer coordi-
nates gives us the physical pseudorapidity-polar coordi-
nates (⌘, �). For the analysis in two dimension, there are
three Minkowski functionals (MFs): area (A), perimeter
(L), and Euler characteristic (�) of the image after the
dilation. We denote the three MFs of P (k) as A(k), L(k),
and �(k).

The Hadwiger’s theorem also implies that the elements
of the sequences A(k), L(k), and �(k) satisfies a recurrence
relation when there is no changes in shape and topology
by dialation.

A(k+1) = A(k) + L(k) + 4�(k),

L(k+1) = L(k) + 8�(k), �(k+1) = �(k) (3)

The deviation from this relation can be understood that
some change has been made at the given angular scale.
Therefore, the analysis on these sequences of MFs can be
considered as a persistent analysis on geometric features
of jet substructures, similar to [30]. These sequences are
also useful as inputs to a neural network for analyzing
the geometric features since typical neural networks start
from a linear combination of the inputs.

Although those MFs are global features of a binary im-
age, they can be written as a sum of local contributions
from 2 ⇥ 2 subimages. Since there are only 16 configura-
tions for the 2⇥2 subimages, we may use a look-up table
v for parameterizing the local contribution [31].

(A(k), L(k), �(k)) =
X

i,j

X

n,m2{0,1}

v
⇣
P (k)

(i+n)(j+m)fnm
⌘

(4)

where fnm = ((1, 2), (4, 8)), and P (k)
ij is 1 or 0 if (i, j)-th

pixel of P (k) is active or not active, respectively.
This algorithms are for square integer lattices, but we

may use hexagonal pixels or marching square algorithms
[32] for approximating MFs without pixellations.

Equation 4 indicates that the MFs can be approxi-
mated by a deep convolutional neural network (CNN).
This is fully discribed in the Appendix. Note that Eq. 4
essentially consists of two components: 2⇥2 convolution
between P (k) and f , and a scalar function v. The stacked
convolutional layers can model this , i.e., the weights of
the first convolutional layer is f and later layers can be
considered as a multilayer perceptron (MLP) that models
v. The filtering by pT is also a local operation that can
be approximated by a CNN. Dilation can be written in
a step function of convolution between the P (0) and the

structuring element B, i.e, P (k)
ij = ✓(P (0)

(i+n)(j+n)Bnm).

Therefore, A(k), L(k), and �(k) are covered by a CNN
trained on jet images. But this expression contains a
step function, which have a point of discontinuity. In
the asymptotic limit of the CNN, this does not mat-
ter much thanks to the universal approximation theorem

本来はジェットイメージはRN+MF がもっている情報を使えるは
ずだた。 

1. ジェットイメージがエネルギーでウエイトされていること  

2.　activation, Loss funcは連続関数であることが前提 

3. でもMF はエネルギーに依存しない関数



何が改善しているか
• 入力が少ない→ loss function の最小化が簡単　true minimum が見つけやすい。 

• 時間　1/10 メモリも1/10  

•  等価なのか、相関なのか。CNN と RN はどうやら違う判断をしている。
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実データのキャリブレーション

• 既存のMCはQCD ジェットのIRCsafe でない分布
をきちんと表していない。（特にグルーオンジェッ
トの粒子数と広がり）Pythia≠ Herwig≠実データ 

• [MC を実データで補正]するときに、MFが実験
データと同じになるようにweight をつけて補正
するとclassification の一致は良くなる。

(a) (b)

Figure 14: (N (0)
, N

(0)(4 GeV)) distributions for (a) PY8 and (b) HW7
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(b)

Figure 15: (N (0)
, N

(1)
/N

(0)) distributions for (a) PY8 and (b) HW7

The separation of the top jets and QCD jets is worse for HW7 compared with PY8 discussed in
previous sections. The AUC of the top jet vs. QCD jet classification predicted by HW7 is smaller than
that predicted by PY8. In figure 16, we show the ROC curves of each classifier trained on HW7 events.
The performance of the RNS2 is similar to that trained on PY8 events. Once N

(0) is additionally
considered in the classification, the performance is improved. However, the improvement from
adding N

(0) is significantly small in HW7, because the N
(0) distributions of top jets and QCD jets
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Figure 18: The ŷ
0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4 GeV), (c)
RNS2,N(0),N(1) , and (d) CNN.

and the reweighting is then e↵ective for transforming the PY8 samples to HW7 samples. The opposite
is not true because there are QCD jets which are not in HW7 generated samples. The reweighting is
not exact because we have only a small number of events in some phase space region, and we see
some deviation in ŷ distribution, as shown in figure 18(b). If one wishes to describe real data by
assigning an appropriate weight for each simulated events, it is better to use a generator setup that
covers wider phase space so that we can correct the event distribution by using experimental data
afterwords.
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Pythia で訓練した分類器で　 

Herwig のQCD jet を分類

N0 分布(pT>0 と pT>4GeV) を補正した後

Generator を GAN で補正するときに、 

ミンコフスキー汎関数の分布だけ補正すれば良い?



教訓とやれそうなこと

• 自分の目でイベントをみよう 

• CNN などのジェットイメージを使った訓練は IRC safeでない量も追
加して分類を強化している。 

• CNNは理解した　(1/10 まで input 圧縮. パフォーマンスは落ちな
い）解釈可能性、速度、安定性、いろいろなプロセスに使える。 

• ミンコフスキー汎関数のような「まとめ指標」の方が実データの検
定にもよい。パートン→ハドロン化の空間分布をよりよく検定でき
るかも。


