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Chapter 1

Introduction

1.1 Background

1.1.1 Two-Dimensional Electron Systems

Electrons and holes are generally free to move in all three spatial directions in bulk metals and
semiconductors. If this freedom is restricted in certain directions, the dimensionality of the system
becomes reduced. For example, in a two-dimensional system, the electrons can only move in one plane
and may not travel perpendicular to this plane. An example of naturally occuring material showing
quasi-2D behavior is graphite where the resistance measured along the sheets is much lower than
between sheets. With an advanced technology on microfabrication, we can make two-dimensional
electron systems(2DES) artificially.

1.1.2 Formation of Two-Dimensional Electron Systems

Molecular beam epitaxy(MBE) technique is one of the methods for the formation of two-dimensional
electron systems. The formation of two-dimensional electron systems in GaAs-AlGaAs heterostructure
is as follows. Electrons are in the AlGaAs conduction band since the part of the AlGaAs is doped
n-type. These electrons move to GaAs since GaAs has acceptors and GaAs conduction band is empty.
Afterward, electrons gather near the interface between GaAs and AlGaAs because of attraction by
positive donors in AlGaAs. Finaly, electrons in AlGaAs are prevented from moving to the GaAs
by the repulsion of electrons in GaAs and attraction of positive donors. This dipole layer formed
from positive donors and the electrons gives rise to a potential discontinuity which finally makes the
Fermi level of the GaAs equal to that of the AlGaAs. Therefore the two-dimensional electron system
is formed near the interface between GaAs and AlGaAs at low temperature. Fig.1.1-(a) shows the
band structure in the GaAs-AlGaAs heterostructure which has no donor. Fig.1.1-(b) shows the band
structure GaAs-AlGaAs heterostructure in which AlGaAs is doped.

In GaAs with high mobility, the two-dimensional electron system can be regarded as the free
electron system. Schrodinger equation in the two-dimensional free electron system in which a magnetic
field is applied perpendicular to the layer of 2DES can be solved analyticaly. This 2DES has discrete
energy levels (Landau levels) separated by the cyclotron energy. In a homogeneous system, as shown
in Fig.1.2-(a), each level has a macroscopic degeneracy that is propotional to the area of the system.
In real materials, scatterings broaden each of levels into a band of states which is called Landau band
(see Fig.1.2-(b)). The states of electrons are localized in space expect a state at the center of each
Landau band, which is called the extended state.

The 2DES in a high magnetic field perpendicular to the layer of 2DES at low temperatures is
called quantum Hall system(QHS).
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Figure 1.1: Electron energy level diagram of a GaAs-AlGaAs heterostructure device :(a) Not doping
(b) Doping in AlGaAs

Figure 1.2: Density of states D(E) vs. energy E for a two-dimensional electron gas in a magnetic field
B: (a) Landau levels in a homogeneous system, and (b) Landau band in a disordered system. h̄ωc is
the cyclotron energy, and lc is the magnetic length.



1.1.3 Integer Quantum Hall Effect

The Hall effect was discovered by E. H. Hall in 1879. If a current perpendicular to a magnetic field
flows in a sample, the electric field perpendicular to the current and the magnetic field is generated.
This is called the Hall effect. The mechanism of this effect is as follows. Charged particles in motion in
a magnetic field feels a Lorentz force perpendicular to their direction of the motion and the magnetic
field. These charged particles accumulate to one side of the sample by the Lorentz force as shown in
Fig.1.3. Thereafter the equilibrium is achieved when the magnetic force is balanced by the electrostatic
force from the build up of charge at the edge. This electrostatic force is called the Hall electric field.
The voltage drop at right angles to the current is called the Hall voltage. This Hall voltage increases
in proportion to the strength of the magnetic field.

Investigating the Hall electric field in the system, we can know the kind of carriers and the density
of carriers in the system since the formula of the Hall resistance contains the charge of carriers and
the density of carriers.

Figure 1.3: Classical Hall effect. jnx is the number flux of electrons.

The integer quantum Hall effect(IQHE) was discovered by K. von Klitzing and others in 2DES in
1980. In the sample in a high magnetic field at low temperature, they found the quantization of the
Hall resistance written as RH = h/ie2 : Planck’s constant h and the electron charge e.

The typical measurement of the Hall resistance in 2DES is as follows. Fig.1.4 shows the experi-
mental setup. Electrons pass from a source contact S to a drain contact D along a sample. A current
I flows in the sample of the geometry which is known as a Hall bar. The measured quantities are the
current, the longitudinal voltage difference VL between contacts A and B, and the transverse voltage
(Hall voltage) VH between contacts A and C.

Figure 1.4: Schemaic view of a rectangular Hall bar for measurements of the quantum Hall effect.
There is a two dimensional electron gas(2DEG) between a source contact S and drain contact D. The
magnetic field is in the z-direction perpendicular to the plane of the 2DEG.

A typical experimental result is shown in Fig.1.5. The Hall resistance Rxy and the diagonal



resistivity ρxx are shown as a function of magnetic field B. Rxy and ρxx are obtained by using the
relations Rxy = VH/I and ρxx = VxW/IL. In the 2DES in a high magnetic field at low temperature,
the Hall resistance is not simply proportional to the strength of the magnetic field. It increases in
quantized steps which is called plateau. At the center of each step, the diagonal resistivity falls to
zero accurately. Where the diagonal resistivity is zero, two-dimensional electrons carry current with
no energy dissipation, much like a superconductor does. This discovery of IQHE is a remarkable
achievement in condensed matter physics. K. von Klitzing won the Nobel Prize in physics in 1985.

Since the accuracy of this quantization was found to be better than 1 ppm, the quantization of
the Hall resistance is used as the standard of resistance since 1990.

Figure 1.5: Measured diagonal resitivity ρxx and Hall resistance Rxy as a function of the magnetic
field in a GaAs/AlGaAs heterostructure.[Okuno, Oorui, Okamoto, Kawaji, Sakai and Kurata]

1.1.4 Breakdown of the Integer Quantum Hall Effect

When we use the IQHE as the standard of resistance, we make a current large so that the Hall
resistance is measured with high precision. However, increasing the current, ρxx suddenly rises many
orders of magnitude within a narrow range of the current at a certain current, which is called a critical
curernt as shown in Fig.1.6. Above the critical current, the nondissipative current flow breaks down .
This physical limits of the IQHE is called the breakdown phenomenon of the IQHE. Up to the present,
various theoretical works on mechanisms to explain experimental results of the breakdown have been
reported.[1, 2, 3, 4, 5, 6, 8]

The mechanism of the breakdown has not been fully understood however. One of the explanation
for the origin of the breakdown is the super-heating of the electron system. In this hot-electron model,
we assume that the change of the diagonal conductivity is described by the change of the electron
temperature Te. Their hot-electron model provided excellent fits to the data in the experiment by S.
Komiyama et al.[3].

1.1.5 Experiment on the Spatial Variation of the Temperature in 2DES with the
Gate Electrode

An interesting experiment in QHS were made by U.Klass et al.[14] in 1991. In their experiments,
they measured spatial variations of temperature in the Hall bar , which is partly covered by the
gate electrode. The result is shown in Fig.1.7. The temperature becomes high in the corners of the
region covered by the gate electrode. I call this corner a hot spot. The filling factor changes at the
neighborhood of the boundary between the region covered by the gate electrode and the region which
is not covered. This rise of the temperature is similar to the rise of the temperature in two opposite
corners (called hot-spot) near the current contacts.



Figure 1.6: Current dependence of ∆RH/RH ≡ RH(ISD)/RH(25µA) − 1 and Vx over the critical
current region of a GaAs heterostructure device at 1.1K. Also shown are the source, drain, and four
potential probes. M. E. Cage et al.(1983)[13].

Figure 1.7: Photograph of the dissipation in the gated regions. The sample structure is indicated by
the black lines.[14]



1.2 Thermohydrodynamics in Quantum Hall Systems

Akera et al.[7, 8, 19] developed a theory of thermohydrodynamics in QHS. They described spatio-
temporal variations of the electron temperature and the chemical potential in the local equilibrium
including the nonlinear transport regime with use of the equations of conservation. There are some
theoretical calculations by using their theory.

1.2.1 Ettingshausen Effect

One of the theoretical calculations by the theory of thermohydrodynamics in QHS is the electron
temperature distribution perpendicular to a current. K. Shimoyama[16] showed that the Ettingshausen
effect occurs in the system, in which the potential in equilibrium has no dependence on x (along the
current) and increases to an unlimited extent in the edge of the sample. In the Ettingshausen effect,
the gradient of the electron temperature is developed in the direction perpendicular to the current in
the presence of the magnetic field. Shimoyama shows that the gradient of the electron temperature
has the variation as a function of the filling factor in the Ettingshausen effect in the QHS. In general,
the sign of the gradient of the electron temperature depends on the direction of the current and that
of the magnetic field. In the QHS, the sign of the gradient of the electron temperature also depends
on the filling factor. Therefore we anticipate that the spatial variations of the filling factor causes
interesting variations of the electron temperature in the QHS. T. Maeda[18] investigated how the
spatial variations of the filling factor influence the distribution of the electron temperature in the
system, in which the potential in equilibrium has no dependence on x and is smoothly varying in the
y direction. He showed the potential variation is important for the spatial variation of the electron
temperature.

1.2.2 Theoretical Calculation on the Spatial Variation of the Electron Tempera-
ture in 2DES with Potential Steps

T. Nakagawa[17] investigated how the potential variations parallel to the current influence the distribu-
tion of the electron temperature in QHS. He employed a model potential which changes discontinuously
at the boundary between the different regions. The result is shown in Fig.1.8. The result shows that
the electron temperature rises near the boundary (x = Lx), and the gradient of the electron temper-
ature near a hot spot is larger. The result has something in common with that of the experiment by
U.Klass et al.. He couldn’t however discuss the variation of the electron temperature near this bound-
ary quantitatively since the electron temperature distribution is not convergent with the number of
calculation points employed in the difference equations. Therefore he couldn’t compare the electron
temperature distribution with that of the experiment by U. Klass et al..

1.3 Purpose of the Present Thesis

In the experiment on the spatial variation of the temperature in the system which has potential steps
parallel to the current, U. Klass et al.[14] have shown that the temperature rises near the hot spot (see
Fig.1.7). However, details of the temperature distribution near the hot spot have not been clarified yet
because of the limited resolving power in the experiment. Then Nakagawa has investigated this system
by the theoretical calculation [17]. However, details of the two-dimensional electron temperature
distribution have not been clarified yet because the electron temperature distribution is not convergent
with the number of calculation points employed in the difference equations. Therefore details of the
electron temperature distribution near the hot spot have not been clarified yet. The purpose of this
thesis is to investigate the two-dimensional electron temperature distribution near the hot spot by
employing a model potential which changes smoothly in the direction parallel to the current. We



Figure 1.8: Numerical calculations of the spatial variations of the electron temperature and the electro-
chemical potential in the system with potential steps by T. Nakagawa[17] in the following parameters
: W̃ = 1.0 × 104, the electrochemical potential in equilibrium µ̃eq

ec = 2.25, the potential difference
d̃V = 0.5 and L̃x = 1.0 × 104. The chemical potential µ̃ is µ̃A = 1.75 in the regions (0 < x/Lx < 1
and 2 < x/Lx < 3) and µ̃B = 2.25 in other regions.



also investigate how the electron temperature distribution depends on various physical variables. In
particular, we investigate the width dependence of the electron temperature distribution near the hot
spot.

The organization of the thesis is as follows, In chapter 2, I introduce a model, processes and curernt.
In chapter 3, I introduce the thermohydrodynamic equations to calculate the variation of the electron
temperature and the electrochemical potential. In chapter 4, I introduce model and method for QHS
with potential steps. In chapter 5, by analytical and numerical calculations, I investigate the spatial
variation of the electron temperature and the electrochemical potential in the Hall bar in which the
equilibrium potential has no dependence on x. In chapter 6, I calculate the spatial variation of the
electron temperature and the electrochemical potential in the Hall bar, which has potential steps. In
chapter 7, summary is given.



Chapter 2

Model, Processes and Current

2.1 Drift and Hopping processes

The number flux density jn is produced by transitions of electrons. I consider two types of transitions
in this thesis: drift and hopping processes.

Drift process is the motion that electron drifts along the equipotential line. The number flux
density by drift process is denoted as jdrift

n . The number flux density by drift process in discontinuous
potential are denoted as jedge

n .
Hopping process is the motion that a localized wave packet of electron hops in intra-Landau level

by a scattering from other electrons. The number flux density by this process are called jhop
n .

Therefore,the total number flux density jnis

jn = jdrift
n + jhop

n . (2.1)

If electrons move,they produce the thermal flux density jq. I call them jedge
q , jdrift

q ,jhop
q in the same

way I call the number flux density.

2.2 Drift current

The local flux density due to drift motion fluctuates spatially because the local potential Vloc contains
the random potential. To obtain the macroscopic flux density, I avarage the local flux density. If the
potential fluctuation length scale lloc is much larger than the magnetic length l =

√
h̄c/e|B|(e > 0)

which is about 0.01 µm at |B| = 5T, the macroscopic number flux density in the Landau level N ,
jdrift

nN , written as
jdrift

nN =
〈
f(ε0

N + Vloc, µec, Te)h−1sB ε̂∇Vloc

〉
av

, (2.2)

with

sB =
B

|B| , ε̂ =

(
0 1
−1 0

)
, (2.3)

f(ε, µec, Te) =
1

1 + exp( ε−µec

kBTe
)
. (2.4)

Since localized states make no contributions to the macroscopic flux density, the occupation prob-
ability of localized states in the above equation can be replaced by that of extended states.Then I
have

jdrift
nN = f(ε0

N + V, µec, Te)
〈
h−1sB ε̂∇Vloc

〉
av

. (2.5)
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Since the spatial average of ∇Vloc is equal to ∇V (Fig.2.1),then the number flux density jdrift
n due to

all the Landau levels becomes
jdrift

n = L11
yxε̂∇V, (2.6)

with

L11
yx =

σyx

e2
= 2

sB

h

∞∑
N=0

fN . (2.7)

Here I assume that the spin splitting is neglected. I call L11
yx a transport coefficient. Similarly, I have

for the thermal flux density
jdrift

q = K21
yxε̂∇V, (2.8)

with

K21
yx = 2

sB

h

∞∑
N=0

(ε0
N + V − µec)fN . (2.9)

This expresses that an electron in the Landau level N carries a thermal energy ε0
N + V − µec.

V
Vloc

Figure 2.1: Schematic drawing of the local potential Vloc and the macroscopic potential V .

2.3 Hopping current

I assume that the number and thermal flux density by hopping process is given as

jhop
n = −2

∞∑
n=0

Dn

(
∂fn

∂µec
∇µec +

∂fn

∂Te
∇Te

)
, (2.10)

jhop
q = −2

∞∑
n=0

Dn(ε0
n − µ)

(
∂fn

∂µec
∇µec +

∂fn

∂Te
∇Te

)
. (2.11)

Here the chemical potential µ(r, t) is defined by µ = µec − V and Dn is written in terms of transition
rate of each hopping process, which depends on the disorder potential. The disorder potential is a
function of µ and Te. I assume the N dependence of Dn to be Dn = (2N +1)D0 with D0 the coefficient
for N = 0. These assumptions are pertinent in the macroscopic scale.

I write jhop
n as

jhop
n = −L11

xx∇µec − L12
xxT−1

e ∇Te. (2.12)

From eq.(2.11) I have

L11
xx = e−2σxx = (kBTe)−1

∞∑
n=0

Dnfn(1 − fn), (2.13)



L12
xx = (kBTe)−1

∞∑
n=0

Dnfn(1 − fn)(ε0
n − µ). (2.14)

Similarly, I have thermal flux density

jhop
q = −L21

xx∇µec − L22
xxT−1

e ∇Te. (2.15)

with

L21
xx = L12

xx, (2.16)

L22
xx = (kBTe)−1

∞∑
n=0

Dnfn(1 − fn)(ε0
n − µ)2. (2.17)

2.4 Edge current

The fluxes in the edge region in which the potential increases to an unlimited extent is the drift
fluxes. I introduce coordinates (ξ, η) for each boundary of the two-dimensional system. The unit
vector normal to the boundary, directed to the outside of the sample, is denoted by n. I take the
η axis in the direction of n and the ξ axis along the boundary in the direction of ε̂n. In the region
ηedge < η < ηedge + ∆η, the drift flux Jedge

n is written as

Jedge
n =

∫ ηedge+∆η

ηedge

jdrift
n dη. (2.18)

Therefore, I have
Jedge

n = Knε̂n, (2.19)

with

Kn = 2
sB

h

∞∑
n=0

∫ ηedge+∆η

ηedge

dη
∂V

∂η
f(ε0

n + V, µec, Te). (2.20)

Since the η dependence of µec and Te is neglected,

Kn = 2
sB

h

∞∑
n=0

∫ ∞

εn

f(ε, µec, Te)dε (2.21)

where εn,µec and Te are to be evaluated at ηedge. The quantity Kn is related to the magnetization per
unit area, M , at ηedge by

Kn(ηedge) = (c/e)M(ηedge), (2.22)

since the edge electric current I and M are related by I = −cMε̂n. The thermal flux is given by

Jedge
q = Kq ε̂n, (2.23)

with

Kq = 2
sB

h

∞∑
n=0

∫ ∞

εn

(ε − µec)f(ε, µec, Te)dε. (2.24)



2.5 Transport current

These fluxes are produced not only by ∇µec and ∇Te, but also by ∇V , and therefore they are in
general nonzero in equilibrium. The standard transport experiment measures a flux through a cross
section of the sample, which is zero in equilibrium. I introduce such a flux jtr

n , which is induced in
nonequilibrium. Subtracting the magnetization current which is nonzero in equilibrium, I obtaine the
transport fluxes:

jtr
n = jn − ε̂∇Mn, jtr

ε = jε − ε̂∇Mε, (2.25)

with
Mn = Kn, Mε = −(Kq + µecKn), (2.26)

jnx(r, t) = −L11
xx∇xµec + L11

yx∇yV − L12
xx

Te
∇xTe, (2.27)

jny(r, t) = −L11
yx∇xV − L11

xx∇yµec − L12
xx

Te
∇yTe, (2.28)

jqx(r, t) = −L21
xx∇xµec + K21

yx∇yV − L22
xx

Te
∇xTe, (2.29)

jqy(r, t) = −K21
yx∇xV − L21

xx∇yµec − L22
xx

Te
∇yTe, (2.30)

where jtr
ε and jtr

q are related by jtr
q = jtr

ε −µecj
tr
n , and Kn and Kq are now to be evaluated at a point

r within the sample.
Therefore, the transport flux densities are difined at each point r by

jtr
nx(r, t) = −L11

xx∇xµec + L11
yx∇yµec − L12

xx

Te
∇xTe +

L12
yx

Te
∇yTe, (2.31)

jtr
ny(r, t) = −L11

yx∇xµec − L11
xx∇yµec −

L12
yx

Te
∇xTe − L12

xx

Te
∇yTe, (2.32)

jtr
qx(r, t) = −L21

xx∇xµec + L21
yx∇yµec − L22

xx

Te
∇xTe +

L22
yx

Te
∇yTe, (2.33)

jtr
qy(r, t) = −L21

yx∇xµec − L21
xx∇yµec −

L22
yx

Te
∇xTe − L22

xx

Te
∇yTe, (2.34)

with

L12
yx = Te

∂Kn

∂Te
, (2.35)

L21
yx = L12

yx, (2.36)

L22
yx = Te

∂Kq

∂Te
. (2.37)



Chapter 3

Equations of Thermohydrodynamics

3.1 Equations of conservation

There are two equations of conservation in our model of quantum Hall systems. One describes the
conservation of the electron number, and the other describes the conservation of the energy. The
equation of the electron number conservation is

∂n

∂t
= −∇ · jn, (3.1)

where n is the electron density. The equation of the energy conservation is

∂ε

∂t
= −∇ · jε − PL. (3.2)

Here jε = εlocaljn is the energy flux density and εlocal is the energy of the electrons at a local point,
while PL is the energy loss per unit area at point r due to the heat transfer between electrons and
phonons and is in general a function of µ,Te, and TL. The energy density is sum of the kinetic energy
density and the potential energy density : ε = εkin + nV .

Equations describing the time evolution of µ and Te are derived from those of n(µ, Te) and the
entropy density s(µ, Te), respectively. The equation for the time evolution of s is derived using
eqs.(3.1),(3.2), and

Teds = dε − µecdn, (3.3)

to be
Te

∂s

∂t
= −∇ · jq − ∇µec · jn − PL, (3.4)

where jq is defined by
jq = jε − µecjn. (3.5)

I employ the simplest model of the energy loss PL :

PL = Cp(Te − TL), (3.6)

where Cp is a constant.
I rewrite the equations of conservation, eqs.(3.1) and (3.4), in terms of the transport flux densities.

Because the divergence of each magnetization current density in eq.(2.25) is zero, the equations can
be written in terms of jtr

n and jtr
q only :

∂n

∂t
= −∇ · jtr

n , (3.7)

Te
∂s

∂t
= −∇ · jtr

q − ∇µec · jtr
n − PL. (3.8)

The term −∇µec · jtr
n is of the second order of the current.
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3.2 Coefficients

I estimate Cp and D0. Cp and D0 can be obtained by calculating the matrix elements of electron-
electron scatterings and electron-phonon scatterings. Although, these calculations are difficult. There-
fore in this thesis, I estimate Cp and D0 by using the result of the experimentation about breakdown
of the quantum Hall effect by Komiyama.

I use dimensionless variables as T̃e = kB
h̄ωc

Te, µ̃ec = 1
h̄ωc

µec, P̃L = l2

h̄ωc
PL, D̃0 = 1

ωc
D0 and C̃p =

l2

kBωc
Cp. Here, a unit of length is magnetic length l, a unit of time is ω−1

c and unit of energy is h̄ωc. ωc

is an angular frequency. I consider that the system is uniform and in steady state , the filling factor is
an even integer, TL = 0 and Te is not large. I assume that two Landau levels near µ̃ec only contribute
to the transport coefficients. Then I estimate σ̃xx = Chf(1 − f). Eq.(2.13) becomes the equation of
an energy balance which is written as

(P̃G =) ˜σxxẼ2 = C̃pT̃e (= P̃L), (3.9)

since ∇ · jq = 0. Fig.3.1 shows how P̃L and P̃G depend on T̃e. Increasing Ẽ, the number of an
intersection point of P̃L and P̃G change from one to two at a value of the electric field. Then this
electric field is called the critical electric field. From the experiment, I estimate dimensionless critical
erectric field as Ẽc = 8 × 10−3 and σ̃xx = 2 × 10−2. Therefore I obtain

C̃p = 6 × 10−6. (3.10)

Using σxx = T̃e
−1

D̃0(2N + 1)f(f − 1), I obtain

D̃0 = 0.005. (3.11)

P

P

P

P

Te

L
/ pC

G
/ pC E

c

E=( )

1.2E =( )
G / pC cE

0.8G
/ pC E=( )

c
E

Figure 3.1: Energy-gain and Energy-loss.[6]



Chapter 4

Model and Method for Quantum Hall
Systems with Potential Steps

I consider a two-dimensional system in the xy plane (−W/2 < y < W/2 and periodic in the x direction)
in a perpendicular magnetic field B = (0, 0, B)(see Fig.4.1). I calculate the electrochemical potential

Figure 4.1: Axis of coordinates.

µec and the electron temperature Te in steady states in this thesis.

4.1 Boundary Conditions

In this system, I use a periodic boundary condition, which is

Te(x + 2Lx, y) = Te(x, y),
µec(x + 2Lx, y) = µec(x, y) + µ0

ec.

Here µ0
ec is electrochemical potential difference to produce a steady current. The number flux, the

thermal flux, µec and Te are in the first order of µ0
ec in the linear-response regime.

In the edge of the sample, I assume that the potential increases to an unlimited extent and that
electrons can’t come and go between Hall bar and the outside. The boundary conditions at y = ±W/2
are

jtr
ny = 0, jtr

qy = 0, (4.1)

since the fluxes to the outside of the sample are absent.
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4.2 Potential and Chemical Potential

If part of the Hall bar is covered by gate electrode, a potential difference (∆V ) is produced in the Hall
bar(Fig.4.2). It poduces a difference in filling factor(Fig.4.3).

I consider the potential distribution which is

V (x) =




∆V
1+exp( x

λ/π
) (−Lx < x < Lx/2)

∆V
1+exp( Lx−x

λ/π
)

(Lx/2 < x < 3/2 Lx) (4.2)

with a lengh scale λ.

V

x

Gate Electrode

Hall Bar

y

Figure 4.2: Hall bar with the gate electrode. Po-
tential changes under the gate electrode.

x

E

ec

Landau Level

Figure 4.3: Change of the filling factor in equilib-
rium state.

4.3 Equations in the Linear-Response Regime

Using eqs.(3.7) and (3.8), I calculate µec and Te. However, It is difficult to solve the above equations.
Therefore I restrict the calculation to the linear-response regime and to steady states. In this regime,
these equations become linear partial differential equations:

−∇ · jtr
n = 0, (4.3)

−∇ · jtr
q − PL = 0. (4.4)

Using eqs.(2.31), (2.32),(2.33) and (2.34), I obtain

0 = −∂L11
xx

∂x
∇xµec +

∂L11
yx

∂x
∇yµec −

∂L12
xx

∂x

Te
∇xTe +

∂L12
yx

∂x

Te
∇yTe

− L11
xx∇2

xµec − L12
xx

Te
∇2

xTe − L11
xx∇2

yµec − L12
xx

Te
∇2

yTe, (4.5)

and

0 = −∂L21
xx

∂x
∇xµec +

∂L21
yx

∂x
∇yµec −

∂L22
xx

∂x

Te
∇xTe +

∂L22
yx

∂x

Te
∇yTe

− L21
xx∇2

xµec − L22
xx

Te
∇2

xTe − L21
xx∇2

yµec − L22
xx

Te
∇2

yTe + Cp(Te − TL) (4.6)

with Cp(Te − TL) = PL. The transport coefficients are to be evaluated in equilibrium since the above
equations, ∇µec and ∇Te are of the first order of the current. In the next section, I discretize the
above equations and boundary conditions.



4.4 Method of the Numerical Calculation

Differential equations are transformed into difference equations. I divide the system into 2n × n sites
as shown in Fig.4.4. I consider the equations on each sites.

...i=1i=2
j=1
j=2

i=2n

j=n

i=n ...

......

......... ...... ... ...
Figure 4.4: System is divided into 2n × n sites.

Using the Taylar expansion, I have

µec(i + 1, j) = µec(i, j) + ∇xµec(i, j)∆x +
1
2
∇2

xµec(i, j)(∆x)2 + · · ·, (4.7)

µec(i − 1, j) = µec(i, j) −∇xµec(i, j)∆x +
1
2
∇2

xµec(i, j)(∆x)2 + · · ·, (4.8)

µec(i, j + 1) = µec(i, j) −∇yµec(i, j)∆y +
1
2
∇2

yµec(i, j)(∆y)2 + · · ·, (4.9)

µec(i, j − 1) = µec(i, j) + ∇yµec(i, j)∆y +
1
2
∇2

yµec(i, j)(∆y)2 + · · ·. (4.10)

From the adove expansion, I approximate ∇xµec(i, j) ,∇2
xµec(i, j) , ∇yµec(i, j) and ∇2

yµec(i, j) in the
second order of ∆x or ∆y. I obtain

∂µec

∂x
∼ µec(i + 1, j) − µec(i − 1, j)

2Lx/n
, (4.11)

∂µec

∂y
∼ µec(i, j − 1) − µec(i, j + 1)

2W/(n − 1)
, (4.12)

∂2µec

∂x2
∼ µec(i + 1, j) − 2µec(i, j) + µec(i − 1, j)

(Lx/n)2
, (4.13)

∂2µec

∂y2
∼ µec(i, j − 1) − 2µec(i, j) + µec(i, j + 1)

(W/(n − 1))2
. (4.14)

The differential of Te can be obtained, similarly. At the each edge(j = 1 and j = n), different approx-
imations of differential of y are needed since the adove equations can’t be used without neighboring
sites. Here I use the Taylar expantion:

µec(i, 2) = µec(i, 1) −∇yµec(i, 1)∆y +
1
2
∇2

yµec(i, 1)(−∆y)2 + · · ·, (4.15)

µec(i, 3) = µec(i, 1) + ∇yµec(i, 1)(−2∆y) +
1
2
∇2

yµec(i, 1)(−2∆y)2 + · · ·, (4.16)



µec(i, n − 1) = µec(i, n) + ∇yµec(i, n)∆y +
1
2
∇2

yµec(i, n)(∆y)2 + · · ·, (4.17)

µec(i, n − 2) = µec(i, n) + ∇yµec(i, n)(2∆y) +
1
2
∇2

yµec(i, n)(2∆y)2 + · · ·. (4.18)

Therefore the approximations in the second order of ∆y are written as

∂µec(i, 1)
∂y

∼ 3µec(i, 1) − 4µec(i, 2) + µec(i, 3)
2W/(n − 1)

, (4.19)

∂µec(i, n)
∂y

∼ −3µec(i, n) − 4µec(i, n − 1) + µec(i, n − 2)
2W/(n − 1)

. (4.20)

The differential of Te can be obtained, similarly.
Using difference equations, eqs.(4.5) and (4.6) with eq.(4.1) become to 4n2 simultaneous equations.

I solve these simultaneous equations. Since the equations and the boundary conditions only contain
the differential of µec, I determine a point of reference which is written as

µec(i0, j0) = 0. (4.21)

I choose µec(n, n/2). One equation of the simultaneous equations is replaced by eq.(4.21).



Chapter 5

Quantum Hall Systems without
Potential Steps

First we consider the two-dimensional system, which has no potential variation along the current. In
this system, Te and µec can be derived analytically.

5.1 Analytical Calculation

5.1.1 Model and Equations [19]

I assume that flux densities and thermodynamic quantities have no dependence on x. The exception
is µec which has a constant gradient along x. The gradient ∇xµec is also independent of y since
∇y∇xµec = ∇x∇yµec = 0, and is equal to ∇xV = eEx. Then ∇xjtr

nx and ∇xjtr
qx become

∇xjtr
nx = 0, (5.1)

∇xjtr
qx = 0. (5.2)

Therefore the equations of conservation are written as

∇yj
tr
ny = 0, (5.3)

∇yj
tr
qy + Cp(Te − TL) = 0. (5.4)

Using eq.(5.3) and the boundary conditions at y = ±W/2, I have

jtr
ny = 0,−W/2 < y < W/2. (5.5)

5.1.2 Spatial Variations of the Electron Temperature [19]

I substitute ∇xµec = eEx and ∇xTe = 0 into the formula of jtr
qy, and use eq.(5.5) to eliminate ∇yµec.

Then I obtain
jtr
qy = −A21

yxeEx − A22
yy∇yTe, (5.6)

with

A21
yx = L21

yx − L21
yy(L

11
yy)

−1L11
yx, (5.7)

A22
yy = [L22

yy − L21
yy(L

11
yy)

−1L12
yy]T

−1
L . (5.8)

The transport coefficients are constant in the linear-response regime. Substituting eq.(5.6) into
eq.(5.4), I obtain the equation for Te :

A22
yy∇2

yTe = Cp(Te − TL), (5.9)
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with the boundary condition:

jtr
qy = −A21

yxeEx − A22
yy∇yTe = 0, y = ±W/2. (5.10)

This boundary condition immediately shows that the electric field Ex along the current induces the
temperature gradient ∇yTe. Solving the equation, I find the spatial variation of Te to be

Te(y) − TL = T0[e−(y+W/2)/λT − e(y−W/2)/λT ]. (5.11)

The relaxation length of the Te deviation is found to be

λT = (A22
yy/Cp)1/2. (5.12)

The magnitude of the Te deviation is

T0 = (λT A21
yx/A22

yy)(1 + e−W/λT )−1eEx. (5.13)

I make a rough estimate of λT . Since

L11
yy ∼ (kBTe)−1D0, (5.14)

L21
yy ∼ D0, (5.15)

L22
yy ∼ D0(kBTe), (5.16)

(5.17)

I find that
A22

yy ∼ kBD0. (5.18)

Using Cp = 6.0 × 10−6 and D0 = 0.005 , λT is estimated to be

λT ∼ 0.01µm. (5.19)

Using eq.(5.5) and eq.(5.11), I find the spatial variation of µec to be

µec = −L11
yx

L11
yy

eExy − 1
TL

L21
yy

L11
yy

Te(y) + const. . (5.20)

The result is shown in Fig.5.6.

5.1.3 Diagonal Resistivity

I substitute ∇xµec = eEx and ∇xTe = 0 into the formula of jtr
nx, and use eq.(5.5) to eliminate ∇yµec.

Then I obtain
jtr
nx = −A11

yyeEx + A21
yxT−1

L ∇yTe, (5.21)

with
A11

yy = L11
yy + (L21

yx)2(L11
yy)

−1. (5.22)

The number fluxJ tr
nx is given by

J tr
nx =

∫ W/2

−W/2
jtr
nxdy. (5.23)

Using eq.(5.21) and eq.(5.11), I obtain

J tr
nx = −WA11

yyeEx + 2A21
yx

T0

TL
(e−W/λT − 1). (5.24)

We know that J tr
nx is extremely small at each Landau level. In the region of λT ∼ W , I obtain the

result that J tr
nx shows local maximum between the neighboring Landau levels(see Fig.5.1, Fig.5.2 and

Fig.5.3).
J tr

nx shows local maximum between the neighboring Landau levels because J tr
nx is induced also by

∇yTe. There is the gradient of the electron temperature due to Ettingshausen effect. The gradient of
Te is larger near the edge. This variation length is λT . Therefore, In the region of W ∼ λT , J tr

nx is
affected by the gradient of Te.



Figure 5.1: Variation of the diagonal resistivity in the following parameters: L̃x = 1.0 × 104 and
W̃ = 0.1 × 104.

Figure 5.2: Variation of the diagonal resistivity in the following parameters: L̃x = 1.0 × 104 and
W̃ = 0.01 × 104.



Figure 5.3: Variation of the diagonal resistivity in the following parameters: L̃x = 1.0 × 104 and
W̃ = 0.001 × 104.

5.1.4 Quantum Oscillations of the Electron Temperature

I investigate µeq dependence of the change of the electron temperature ∆Te = Te(W/2) − Te(0). I
show in Fig.5.4. I obtain the result that the sign of ∆Te exhibits quantum oscillations as a func-
tion of µ. Whenever µ increase every 0.5h̄ω, the sign of ∆Te is reversed since the kind of carriers
changes(Fig.5.5)[16].

Figure 5.4: Variation of ∆Te in the following pa-
rameters: L̃x = 1.0 × 104 and W̃ = 0.1 × 104.

Figure 5.5: Change of filling factor in equilibrium
state.

5.2 Numerical Calculation

I have investigated this system by two methods. One is an analytical calculation, and the other is a
numerical calculation. I have calculated a spatial variation of the electron temperature and that of
the chemical potential in the following parameters: the number of the site N = 50, the length of the
system L̃x = W̃ = 1 × 103 (about 10µm at B = 5T) , T̃L = 0.1 (about 10K at B = 5T) and chemical
potential in equilibrium µ̃eq = 2.25. Fig.5.6 shows the result. In the edge region, the gradient of
electron temperature is large. Estimating ∆Te at Ĩ/W̃ = 0.1 , B = 5T, it is about 5K. IQHE can be
found in this situation and the current is 0.1A/m. These calculations by each methods are consistent.



Figure 5.6: Spatial variations of the electron temperature and the electrochemical potential for L̃x =
1.0 × 103, W̃ = 0.5 × 103, T̃L = 0.1 and µ̃eq

ec = 2.25.



Chapter 6

Quantum Hall Systems with Potential
Steps

6.1 Electrochemical Potential in the Isothermal Case

I consider the system, in which the potential in equilibrium has a dependence on x. It is difficult
to solve eq.(4.5) and eq.(4.6) analytically in this system. Therefore first I simplify the system to
calculate analytically. To simplify the system, I consider the system in the isothermal condition by
putting Cp → ∞. This means that the electron temperature is equal to the lattice temperature
because eq.(4.4) is written as

∇ · jtr
q

Cp
= Te − TL. (6.1)

Therefore eq.(2.31) and eq.(2.32) can be written as

jtr
nx(r, t) = −L11

xx∇xµec + L11
yx∇yµec, (6.2)

jtr
ny(r, t) = −L11

yx∇xµec − L11
xx∇yµec. (6.3)

Using these equations, the equation about the conservation of the electron number is rewritten as

0 = −∂L11
xx

∂x
∇xµec +

∂L11
yx

∂x
∇yµec − L11

xx∇2
xµec − L11

xx∇2
yµec. (6.4)

Similarly, the boundary conditions can be rewritten to be

0 = −L11
yx∇xµec − L11

xx∇yµec. (6.5)

6.1.1 Analytical Results in the Limit of the Slowly-Varying Potential

In this subsection, I consider the system in which the variation length scale λ is long so that

∇xjtr
nx = 0,∇x∇yµec = 0. (6.6)

Using the equation of conservation and boundary conditions, I obtain

jtr
ny = 0. (−W/2 < y < W/2) (6.7)

Then using eq.(6.2) and eq.(6.3), ∇xµec and ∇yµec are written as

∇xµec = − L11
yy

(L11
yy)2 + (L11

yx)2
jtr
nx, (6.8)

∇yµec =
L11

yx

(L11
yy)2 + (L11

yx)2
jtr
nx. (6.9)
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The gradient ∇xµec is independent of y since ∇y∇xµec = ∇x∇yµec = 0 . Therefore jtr
nx is also

independent of y. Integrating jtr
nx, I obtain the equation :

∫ W/2

−W/2
jtr
nxdy = jtr

nxW = I. (6.10)

I obtain ∇xµec and ∇yµec to be

∇xµec = − (I/W )L11
yy

(L11
yy)2 + (L11

yx)2
, (6.11)

∇yµec =
(I/W )L11

yx

(L11
yy)2 + (L11

yx)2
. (6.12)

6.1.2 Analytical Results in the Limit of the Narrow Width

In this subsection, I consider the system which is so narrow that only terms in the lowest order of W
should be retained.

Using the Taylar expantion, jtr
ny is written in this approximation as

jtr
ny ∼ jtr

ny|y=W/2, (6.13)

and jtr
ny is independent of y. Using boundary conditions, jtr

ny is written as

jtr
ny = 0. (−W/2 ≤ y ≤ W/2) (6.14)

Therefore using the discussion of the section (6.1.1), I can derive ∇xµec and ∇yµec :

∇xµec = − (I/W )L11
yy

(L11
yy)2 + (L11

yx)2
, (6.15)

∇yµec =
(I/W )L11

yx

(L11
yy)2 + (L11

yx)2
. (6.16)

The electrochemical potential in the limit of W → 0 is equal to the electrochemical potential in the
Limit of λ → ∞ .

6.1.3 Numerical Results in the Narrow Width Case

I calculate the variations of µ̃ec. The chemical potential in the region A µ̃eq
A = µ̃eq

ec = 2.25, the
potential difference ∆Ṽ = 0.5, the chemical potential in the region B µ̃eq

B = µ̃eq
ec −∆Ṽ = 1.75, T̃L = 0.1

,W = 0.01 × 104, λ̃ = 0.25 × 104 and L̃x = 1 × 104 are used. The result is shown in Fig.6.1. This
result is consistent with the result of the one-dimensional calculation as shown in Fig.6.2 and Fig.6.3.

6.1.4 Numerical Results : W Dependence

The one-dimensional variation of µec can be derived analytically. I can’t however derive W dependence
of the variation of µec analytically. Therefore I derive it numerically. The variation of µec has negligible
dependence on the number of the sites as shown in Fig.6.4. Fig.6.5 suggests that the variation of µec

peculiar to a two-dimensional system exists.



Figure 6.1: Spatial variations of µ̃ec.

Figure 6.2: Variations of µ̃ec at ỹ = 0 (center). The result of the analytical calculation in the limit of
W̃ → 0 is consistent with that of the numerical calculation.



Figure 6.3: Spatial variations of (µ̃ec(W̃/2)− µ̃ec(−W̃/2))/(Ĩ/W̃ ). The result of the analytical calcu-
lation in the limit of W̃ → 0 is consistent with that of the numerical calculation.

Figure 6.4: N dependence of the electrochemical potential. The spatial variations for W̃ = 0.1 × 104,
T̃L = 0.1, λ̃ = 0.15 × 104, µ̃A = 2.25, µ̃B = 1.75, and L̃x = 1.0 × 104. The lattice constant ∆x is
(a)∆x̃ = L̃x/N = 0.03 × 104 and (b)∆x̃ = L̃x/N = 0.015 × 104. In the left side is an equipotential
line of µ̃ec. In the right side is the variation at each y in the x direction.



Figure 6.5: W dependence of the electrochemical potential : the spatial variations for L̃x = 1.0× 104,
λ̃ = 0.25 × 104, T̃L = 0.1, µ̃A = 2.25, and µ̃B = 1.75. (a):W̃ = 1.0 × 104,(b):W̃ = 0.1 × 104,(c):W̃ =
0.01 × 104.



6.1.5 Numerical Results : Dependences on Other Parameters

There are results from Fig.6.5 to Fig.6.8. One parameter is changed in each result. There are the
results in the standard parameters for L̃x = 1.0×104, λ̃ = 0.15×104, T̃L = 0.1, µ̃A = 2.25, µ̃B = 1.75,
and W̃ = 0.1 × 104 in the center of the each figure. As shown in results, the variation of µec peculiar
to a two-dimensional system occurs near the boundaries (x = 0.Lx).

Increasing D̃0 or T̃L, the variation of µec peculiar to a two-dimensional system becomes small as
shown in Fig.6.6. Increasing ∆Ṽ or decreasing λ̃, the electric field concentrates more at the hot spot as
shown in Fig.6.7. Fig.6.8 shows that the concentration of the electric field is only near the boundary(
x = 0, Lx).



Figure 6.6: TL dependence is in the upper side and the D0 dependence is in the lower side. The
spatial variations of µ̃ec for L̃x = 1.0× 104, W̃ = 0.1× 104, λ̃ = 0.15× 104, µ̃A = 2.25, and µ̃B = 1.75.
The lattice temperature is T̃L = 0.05 in (a), T̃L = 0.2 in (b), and T̃L = 0.1 in (c), (d) and (e). The
transition rate is D̃0 = 0.005 in (a), (b) and (c), D̃0 = 0.05 in (d), and D̃0 = 0.0005 in (e).



(e)

Figure 6.7: ∆V dependence is in the upper side and the λ dependence is in the lower side. The spatial
variations of µ̃ec for L̃x = 1.0× 104, W̃ = 0.1× 104, T̃L = 0.1, and µ̃A = 2.25. The chemical potential
is µ̃B = 1.25 in (a), µ̃B = 0.75 in (b), and µ̃B = 1.75 in (c), (d) and(e). The potential variation length
is λ̃ = 0.15 × 104 in (a), (b) and (c), λ̃ = 0.10 × 104 in (d), and λ̃ = 0.25 × 104 in (e).



Figure 6.8: Lx dependence of the electrochemical potential. The spatial variations for W̃ = 0.1× 104,
T̃L = 0.1, λ̃ = 0.15 × 104, µ̃A = 2.25, µ̃B = 1.75, and L̃x = 1.0 × 104. The length of the sample is
(a)L̃x = 2.0 × 104 and (b)L̃x = 3.0 × 104.



6.2 Electron Temperature and the Electrochemical Potential:Numerical
Calculation

6.2.1 Comparison with Analytical Result in the Limit of W � λT

In the limit of W � λT , I expect that the result of the two-dimensional numerical calculation is in
agreement with that of the one-dimensional analytical calculation shown in Appendix. Fig.6.9-(a)
shows that the variation of ∆Te of the numerical calculation in the case of small λ is in good agree-
ment with that of ∆Te of the analytical calculation with discontinuous potential steps(see Appendix).
Similarly, Fig.6.9-(b) shows that the variation of µec in the two-dimensional calculation is in agreement
with that of µec in the one-dimensional calculation.

(b)

Figure 6.9: Spatial variation of (a) the electron temperature and (b) the electrochemical potential for
L̃x = 1.0 × 104, W̃ = 0.0001 × 104, T̃L = 0.1, µ̃A = 2.25, µ̃B = 1.75 and λ̃T ∼ 0.002 × 104.

6.2.2 Results

Fig.6.10 shows Ettingshausen Effect. The carriers are different in each region since the chemical
potential in the region A is µ̃ = 2.25 and one in the region B is µ̃ = 1.75. Therefore the gradient of
the electron temperature is reversed each region as shown in Fig.6.10 since the direction of the thermal
current is different in each region. The maximum of ∆Te is estimated to be about 5K in the following
parameters : I/W = 0.1A/m and B = 5T .

I calculated the distribution of the electron temperature and the electrochemical potential in the
following parameters : µ̃eq

ec = 3.00, ∆Ṽ = 1.0, L̃x = 1.0 × 104, W̃ = 0.1 × 104, λ̃ = 0.1 × 104 and
T̃L = 0.1. The filling factor is 6 in A and 4 in B, in agreement with the experiment by U. Klass
et al.[14]. The result is shown in Fig.6.11. The electron temperature rises near the hot spot. The
electric field concentrates near the hot spot. The maximum of ∆Te is estimated to be about 5K in
the following parameters : I/W = 0.1A/m and B = 5T .

There are results from Fig.6.14 to Fig.6.19. One parameter is changed in each result. As shown
in results, the variation of µec peculiar to a two-dimensional system occurs near the boundaries (x =
0.Lx). The variations of µec and Te have negligible dependence on the number of the sites as shown
in Fig.6.12.

Increasing the width of the sample, we can recognize the two-dimensional behavior of the system.
jtr
ny can be neglected in the one-dimensional system but it can not be neglected in the two-dimensional

system as shown in Fig.6.20. The current in the y direction causes the variation of µec from eq.(2.32).



Figure 6.10: Spatial variations of T̃e and µ̃ec in the following parameters : L̃x = 1.0×104, W̃ = 0.1×104,
λ̃ = 0.1 × 104, T̃L = 0.1, µ̃eq

A = 2.25, µ̃eq
B = 1.75 and N = 50.The lattice constant in the numerical

calculation is d̃ = L̃x/N = 0.02 × 104. (a) and (b) are the spatial variations of T̃e. (c) is the spatial
variation of µ̃ec.

Figure 6.11: Spatial variations of T̃e and µ̃ec in the following parameters : L̃x = 1.0×104, W̃ = 0.1×104,
λ̃ = 0.15 × 104, T̃L = 0.1, µ̃eq

A = 3.00, µ̃eq
B = 2.00 and N = 50.The lattice constant in the numerical

calculation is d̃ = L̃x/N = 0.02 × 104. (a) and (b) are the spatial variations of T̃e. (c) is the spatial
variation of µ̃ec.



x

Figure 6.12: N dependence of the electrochemical potential and the electron temperature. The spatial
variations for L̃x = 1.0× 104, W̃ = 0.1× 104, λ̃ = 0.15× 104, T̃L = 0.1, µ̃A = 2.25 and µ̃B = 1.75. The
lattice constant ∆x̃ is (a)(c)∆x = L̃x/N = 0.040 × 104 and (b)(d)∆x̃ = L̃x/N = 0.020 × 104. In the
left side is an equipotential line of µ̃ec. In the right side is the variation at each y in the x direction.



Figure 6.13: W dependence of the electrochemical potential : the spatial variations for L̃x = 1.0×104,
λ̃ = 0.25 × 104, T̃L = 0.1, µ̃A = 2.25, and µ̃B = 1.75. (a):W̃ = 1.0 × 104,(b):W̃ = 0.1 × 104,(c):W̃ =
0.01 × 104. In the left side is an equipotential line of µ̃ec. In the right side is the variation at each y
in the x direction.



Figure 6.14: W dependence of the electron temperature : the spatial variations for L̃x = 1.0 × 104,
λ̃ = 0.25 × 104, T̃L = 0.1, µ̃A = 2.25, and µ̃B = 1.75. (a):W̃ = 1.0 × 104,(b):W̃ = 0.1 × 104,(c):W̃ =
0.01 × 104.



Figure 6.15: TL dependence is in the upper side and the D0 dependence is in the lower side. The
spatial variations of µ̃ec for L̃x = 1.0× 104, W̃ = 0.1× 104, λ̃ = 0.15× 104, µ̃A = 2.25, and µ̃B = 1.75.
The electron temperature is T̃L = 0.05 in (a), T̃L = 0.2 in (b), and T̃L = 0.1 in (c), (d) and(e). The
transition rate is D̃0 = 0.005 in (a), (b) and (c), D̃0 = 0.05 in (d), and D̃0 = 0.0005 in (e).



Figure 6.16: ∆V dependence is in the upper side and the λ dependence is in the lower side. The
spatial variations of µ̃ec for L̃x = 1.0 × 104, W̃ = 0.1 × 104, T̃L = 0.1 and µ̃A = 2.25. The chemical
potential is µ̃B = 1.25 in (a), µ̃B = 0.75 in (b), and µ̃B = 1.75 in (c), (d) and (e). The potential
variation length is λ̃ = 0.15 in (a), (b) and (c), λ̃ = 0.10 in (d), and λ̃ = 0.25 in (e).



Figure 6.17: Lx dependence of the electrochemical potential. The spatial variations for W̃ = 0.1×104,
T̃L = 0.1, λ̃ = 0.15 × 104, µ̃A = 2.25, µ̃B = 1.75, and L̃x = 1.0 × 104. The length of the sample is
(a)L̃x = 2.0 × 104 and (b)L̃x = 3.0 × 104.



Figure 6.18: Cp dependence of the electrochemical potential. The spatial variations for L̃x = 1.0×104,
W̃ = 0.1 × 104, T̃L = 0.1, λ̃ = 0.15 × 104, µ̃A = 2.25, µ̃B = 1.75, and L̃x = 1.0 × 104. The coefficient
C̃p is (a)C̃p = 6.0 × 10−6, (b)C̃p = 6.0 × 10−7 and (c)C̃p = 6.0 × 10−8 .



Figure 6.19: Cp dependence of the electron temperature. The spatial variations for L̃x = 1.0 × 104,
W̃ = 0.1 × 104, T̃L = 0.1, λ̃ = 0.15 × 104, µ̃A = 2.25, µ̃B = 1.75, and L̃x = 1.0 × 104. The coefficient
C̃p is (a)C̃p = 6.0 × 10−6, (b)C̃p = 6.0 × 10−7 and (c)C̃p = 6.0 × 10−8 .

Figure 6.20: Spatial variations of ˜jtr
nx and ˜jtr

ny for µ̃eq
ec = 3.25, ∆Ṽ = 1.0, L̃x = 1.0×104, W̃ = 0.1×104

λ̃ = 0.1 × 104, N = 50 and T̃L = 0.1.



6.3 Discussion

In this chapter, I investigated the system with potential steps. The variation of the electrochemical
when Te = TL shows the variation peculiar to the two-dimensional system:the electric field concentrates
near the hot spot. From the numerical result on the width dependence, it has been shown that two-
dimensional variation occurs in the region of W/λ ≥ 1. When W is very small or λ is very long, The
numerical calculation in the limit of Cp → ∞ is in agreement with the analytical calculation in the
limit of Cp → ∞. The distribution of the electron temperature also has such a dependence on W/λ.

Figure 6.21: Spatial variation of µec in the limit of Cp → ∞ in the following parameters : µ̃eq
A = 3.25,

µ̃eq
B = 2.25, L̃x = 1.0 × 104, W̃ = 0.1 × 104 λ̃ = 0.1 × 104, N = 50 and T̃L = 0.1.

Fig.6.21 shows that the electric field concentrates near hot spots in the limit of Cp → ∞. The
thermal flux in the limit of Cp → ∞ flows as shown in Fig.6.22. The thermal flux concentrates near
hot spots. The divergence of the thermal flux is large near hot spots as shown in Fig.6.23. Therefore
when Cp is finite, the electron temperature becomes high near the hot spot from the equation of the
energy conservation (see eq.4.4).

Figure 6.22: Spatial variations of ˜jtr
qx and ˜jtr

qy in the limit of Cp → ∞ for µ̃eq
A = 3.25, µ̃eq

B = 2.25,
L̃x = 1.0 × 104, W̃ = 0.1 × 104 λ̃ = 0.1 × 104, N = 50 and T̃L = 0.1.

Figure 6.23: Divergence of the thermal flux in the limit of Cp → ∞.



Chapter 7

Summary

In this thesis, I have investigated the electron temperature distribution in the system which has
potential steps parallel to the current by the equations of thermohydrodynamics, and clarified how
the electron temperature distribution depends on various physical variables in this system.

The calculated result shows that the gradient of the electron temperature and the electric field are
large near the point of intersection between the sample edge and the potential step. We found that
the large gradient of the electron temperature near this point is understood by the large divergence of
the thermal flux in the limit of Cp → ∞ (see eq.(4.4)). By the numerical and analytical calculation, I
have investigated the width dependence of the electron temperature distribution. We found that the
large gradient of the electron temperature near the point appears when W/λ is large.

I have also investigated the system without potential steps. I have shown analytically that the
gradient of the electron temperature affects the diagonal resistivity as a function of the chemical
potential. The diagonal resistivity shows a local maximum between the neighboring Landau levels
when W is small.

The reason why the electric field concentrates near the hot spot is not clear yet. It is an interesting
future problem to make clear what causes the electric field to concentrate near the hot spot.

Here, I have investigated the system which has the discontinuous confining potential in the direction
perpendicular to the current. Maeda [18] has investigated the electron temperature distibution in the
system which has the smooth confining potential, and has shown that the sign of the gradient of the
electron temperature varies in the direction perpendicular to the current. Therefore it is interesting
to investigate a system with the smooth confining potential and potential steps along the current.
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Appendix

Analytical Result in the Limit of W � λT : Discontinuous Potential-
Step

Model

I consider the potential which changes discontinuously in the boundary line. In the limit of λT 	 W ,
the electron temperature distribution can be derived analyticaly. I calculate the fluxes in the first-
order of W since the width of the sample W is small compared with the length scale of variations of
Te and µec. By using the Taylar expansion, jtr

ny and jtr
qy are written in this approximation as

jtr
ny ∼ jtr

ny|y=W/2, (7.1)

jtr
qy ∼ jtr

qy|y=W/2. (7.2)

Using the boundary conditions at ±W/2, I obtain

jtr
ny = 0, −W/2 < y < W/2, (7.3)

jtr
qy = 0, −W/2 < y < W/2. (7.4)

Derivation and Solution

I use eq.(7.3) and eq.(7.4) to elimeinate ∇yµec. Then I obtain

T−1
L ∇yTe = −A

C
∇xµec − B

C
T−1

L ∇xTe, (7.5)

with

A = L11
yxL21

yy − L21
yxL11

yy, (7.6)

B = L21
yxL21

yy − L22
yxL11

yy, (7.7)

C = (L21
yy)

2 − L11
yyL

22
yy. (7.8)

Similarly, I use eq.(7.3) and eq.(7.4) to elimenate ∇yTe. Then I have

∇yµec = −D

E
∇xµec − F

E
T−1

L ∇xTe, (7.9)

with

D = L11
yxL22

yy − L21
yxL11

yy, (7.10)

E = L11
yyL

22
yy − (L21

yy)
2, (7.11)

F = L21
yxL22

yy − L21
yyL

22
yx. (7.12)
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Using eq.(7.5) and eq.(7.9), jtr
nx and jtr

qx can be written as

jtr
nx = −Gn∇xµec − HnT−1

L ∇xTe, (7.13)
jtr
qx = −Gq∇xµec − HqT

−1
L ∇xTe, (7.14)

with

Gn = L11
yy +

D

E
L11

yx +
A

C
L21

yx, (7.15)

Hn = L21
yy +

F

E
L11

yx +
B

C
L21

yx, (7.16)

Gq = L21
yy +

D

E
L21

yx +
A

C
L22

yx, (7.17)

Hq = L22
yy +

F

E
L21

yx +
B

C
L22

yx. (7.18)

Therefore, equations of the conservation become

−Gn∇2
xµec − HnT−1

L ∇2
xTe = 0, (7.19)

−Gq∇2
xµec − HqT

−1
L ∇2

xTe + PL = 0, (7.20)

using ∇ ·jtr
n = ∇xjtr

nx and ∇ ·jtr
q = ∇xjtr

qx. I use eq.(7.19) and eq.(7.20) to derive differential equations.
Then I obtain the equation for Te(x):

KT

TL
∇2

xTe = Cp(Te − TL), (7.21)

with
KT = Hq − Hn(Gn)−1Gq. (7.22)

Similarly, the equation for µec(x) is obtained:

Kµ∇2
xµec = Cp(Te − TL), (7.23)

with
Kµ = Gq − Gn(Hn)−1Hq. (7.24)

Using eq.(7.21) and eq.(7.23), general solutions of Te and µec in each region A and B (see Fig.4.1) are
derived :

TA(x) − TL = M1e
αAx + M2e

−αAx, (7.25)
TB(x) − TL = M3e

αBx + M4e
−αBx, (7.26)

µecA = KnA(TA − TL) + N1x + N2, (7.27)
µecB = KnB(TB − TL) + N3x + N4, (7.28)

with

α =

√
Cp

KT
TL, (7.29)

Kn =
KT

KµTL
. (7.30)

(7.31)



To solve these equations, I use the boundary conditions :

Te(+0) = Te(2Lx − 0), (7.32)
Te(Lx + 0) = Te(Lx − 0), (7.33)

µec(+0) = µec(2Lx − 0) − µ0
ec, (7.34)

µec(Lx + 0) = µec(Lx − 0), (7.35)
jtr
nx(Lx + 0) = jtr

nx(Lx − 0), (7.36)
jtr
qx(+0) = jtr

qx(2Lx − 0), (7.37)

jtr
qx(Lx + 0) = jtr

qx(Lx − 0), (7.38)
(7.39)

since the system is periodic and variables are continuous at x = Lx. N2 can’t be determined sinse the
equations only contain the differential of µec. Therefore solving these equations, M1, M2, M3, M4,
N1, N3 and N4 − N2 are obtained :

M1 =
X3U4P3GnBΓ2

Z1Γ2 − Γ1Z2
µ0

ec, (7.40)

M2 = −Γ1

Γ2
M1, (7.41)

M3 =
Y1

Y3
M1 +

Y2

Y3
M2, (7.42)

M4 = M1 + e−αALxM2 − e−αBLxM3, (7.43)

N1 =
αA(OqAGnB − OnAGqB)(M1 − M2e

−αALx) + αB(OnBGqB − OqBGnB)(M3e
−αBLx − M4)

GnAGqB − GqAGnB
,(7.44)

N3 =
1
Lx

{KnA(e−αALx − 1)(M1 − M2) + KnB(M3 + M4)(e−αBLx − 1) − N1Lx − µ0
ec}, (7.45)

N4 − N2 = KnA(M1 + M2e
−αALx) + Lx(N1 − N3) − KnB(M3e

−αBLx + M4), (7.46)

with

X1 = −(1 − e−(αA−αB)Lx), (7.47)
X2 = eαBLx − eαBLx , (7.48)
X3 = 2 sinh(αBLx), (7.49)
Y1 = U3 − U1, (7.50)
Y2 = U3e

−αALx − U1, (7.51)
Y3 = U3(e−αBLx − 1), (7.52)
U1 = −OqAαA(1 − e−αALx), (7.53)
U3 = OqBαB(1 − e−αBLx), (7.54)
Γ1 = X1Y3 − Y1X3, (7.55)
Γ2 = X2Y3 − Y2X3, (7.56)
Z1 = 2X1V3U3 − (V1U3 + U1V3)X3, (7.57)
Z2 = 2X2V3U3 + (V1U3 + U1V3)X3, (7.58)
V1 = R1αA + GnBKnA(GnAGqB − GqAGnB)(1 − e−αALx), (7.59)
V3 = R2αBe−αBLx − GnBKnB(GnAGqB − GqAGnB)(1 − e−αBLx), (7.60)
R1 = LxGnB{−OnA(GqA + GqB) + OqA(GnA + GnB)}, (7.61)
R2 = LxGnB{−OnA(GqA + GqB) + OqA(GnA + GnB)}, (7.62)



On = GnKn + HnT−1
L , (7.63)

Oq = GqKn + HqT
−1
L . (7.64)

Results

The variations of Te and µec are shown in Fig.7.1 and Fig.7.2. Near the boundary (x = Lx), Te rises.
At the boundary, transport coefficients change discontinuously since the filling factor increases discon-
tinuously. jtr

nx has no dependence on x. Therefore dissipation of the energy causes the temperature to
rise since jtr

qx is different in each region.

Figure 7.1: The variation of ∆Te. Figure 7.2: The variation of µec.
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